• Title/Summary/Keyword: great earthquake

Search Result 177, Processing Time 0.025 seconds

The use of cost-benefit analysis in performance-based earthquake engineering of steel structures

  • Ravanshadnia, Hamidreza;Shakib, Hamzeh;Ansari, Mokhtar;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.561-570
    • /
    • 2022
  • It is of great importance to be able to evaluate different structural systems not only based on their seismic performance but also considering their lifetime service costs. Many structural systems exist that can meet the engineering requirements for different performance levels; therefore, these systems shall be selected based on their economic costs over time. In this paper, two structural systems, including special steel moment-resisting and the ordinary concentric braced frames, are considered, which are designed to meet the three performance levels: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). The seismic behavior of these two systems is studied under three strong ground motions (i.e., Tabas, Bam, Kajour earthquake records) using the Perform3D package, and the incurred damages to the studied systems are examined at two hazard levels. Economic analyses were performed to determine the most economical structural system to meet the specified performance level requirements, considering the initial cost and costs associated with damages of an earthquake that occurred during their lifetime. In essence, the economic lifetime study results show that the special moment-resisting frames at IO and LS performance levels are at least 20% more economical than braced frames. The result of the study for these building systems with different heights designed for different performance levels also shows it is more economical from the perspective of long-term ownership of the property to design for higher performance levels even though the initial construction cost is higher.

A Study of the Characteristics of Emergency Housing from Japan Prefabricated Construction Suppliers and Manufacturers Association and General Construction Companies Provided during the Great East Japan Earthquake - focusing on the Kaisei and Ohashi Complexes of Ishinomaki City - (동일본대지진 시 공급된 프리패브건축협회 및 종합건설사의 응급가설주택 특성에 관한 연구 - 이시노마키시(石巻市) 카이세이(開成)단지 및 오하시(大橋)단지를 중심으로 -)

  • Lee, Sang-Hee;Kim, Bong-Ae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.4
    • /
    • pp.61-70
    • /
    • 2020
  • The purpose of this study is to provide data for planning future temporary housing in Korea by comparing and analyzing the characteristics of emergency housing rapidly supplied by Japan Prefabricated Construction Suppliers and Manufacturers Association(JPA) and general construction companies, according to the supply subject in times of natural disasters in Japan. Literature reviews and on-site field investigations are conducted as research methods during the period of August 4th~9th, 2019. As subjects of study, the characteristics of two housing complex built in Ishinomaki City with different supply subjects were compared and analyzed. As a result of this study, Japan has a clear distinction of terms for emergency housing, which are divided into rental and construction types. With the close cooperation between the government, local governments and construction companies, providing a prompt systematic supply is possible. The characteristics of emergency housing are differ depending on supply subjects. The emergency housing of JPA has diversity of plane, two rooms facing south, and fast construction time, while the emergency housing of the general construction company has a flexible spatial transformation and excellence of materials.

Discussions on the September 2016 Gyeongju Earthquakes (2016년 9월 경주지진 소고(小考))

  • Lee, Kiehwa
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls (벽체 단부의 횡보강근 양에 따른 변형능력의 평가)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

Smart pattern recognition of structural systems

  • Hassan, Maguid H.M.
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.39-56
    • /
    • 2010
  • Structural Control relies, with a great deal, on the ability of the control algorithm to identify the current state of the system, at any given point in time. When such algorithms are designed to perform in a smart manner, several smart technologies/devices are called upon to perform tasks that involve pattern recognition and control. Smart pattern recognition is proposed to replace/enhance traditional state identification techniques, which require the extensive manipulation of intricate mathematical equations. Smart pattern recognition techniques attempt to emulate the behavior of the human brain when performing abstract pattern identification. Since these techniques are largely heuristic in nature, it is reasonable to ensure their reliability under real life situations. In this paper, a neural network pattern recognition scheme is explored. The pattern identification of three structural systems is considered. The first is a single bay three-story frame. Both the second and the third models are variations on benchmark problems, previously published for control strategy evaluation purposes. A Neural Network was developed and trained to identify the deformed shape of structural systems under earthquake excitation. The network was trained, for each individual model system, then tested under the effect of a different set of earthquake records. The proposed smart pattern identification scheme is considered an integral component of a Smart Structural System. The Reliability assessment of such component represents an important stage in the evaluation of an overall reliability measure of Smart Structural Systems. Several studies are currently underway aiming at the identification of a reliability measure for such smart pattern recognition technique.

Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models (등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가)

  • Park, Ji-Hun;Jeon, Seong-Ha;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-59
    • /
    • 2012
  • The seismic performance of masonry-infilled frame structures, typical in school buildings, is evaluated through equivalent strut models. A bare frame model, concentric strut models and eccentric strut models with various material characteristics available in the literature are analyzed. Displacements and damage states at the performance points obtained by the capacity spectrum method show great differences among the models. Infill walls act positively in concentric strut models and negatively in eccentric strut models at the performance points for a given seismic demand. In addition, the behavior at the ultimate displacements shows considerably different strengths, inter-story drifts, and numbers and locations of damaged members among various modeling methods and material strengths.

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

Ambient and forced vibration testing with numerical identification for RC buildings

  • Aras, Fuat
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.809-822
    • /
    • 2016
  • Reinforced concrete buildings constitute the majority of the building stock of Turkey and much of them, do not comply the earthquake codes. Recently there is a great tendency for strengthening to heal their earthquake performance. The performance evaluations are usually executed by the numerical investigations performed in computer packages. However, the numerical models are often far from representing the real behaviour of the existing buildings. In this condition, experimental modal analysis fills a gap to correct the numerical models to be used in further analysis. On the other hand, there have been a few dynamic tests performed on the existing reinforced concrete buildings. Especially forced vibration survey is not preferred due to the inherent difficulties, high cost and probable risk of damage. This study applies both ambient and forced vibration surveys to investigate the dynamic properties of a six-story residential building in Istanbul. Mode shapes, modal frequencies and damping ration were determined. Later on numerical analysis with finite element method was performed. Based on the first three modes of the building, a model updating strategy was employed. The study enabled to compare the results of ambient and forced vibration surveys and check the accuracy of the numerical models used for the performance evaluation of the reinforced concrete buildings.