In this study, the influenced of graphite shape on the boriding of cast iron and boride structure was investigated. Gray cast iron, ferritic and pearlitic ductile cast iron were borided at 750,850,900 and $950^{\circ}C$ for 1,3 and 5 hours by powder pack method with the mixture of $B_4C_9\;Na_2B_4O_7$, $KBF_4$ and Shc. The boride layer was consisted of FeB(little), $Fe_2B$ (main) and graphite. Some possibility of the existence of unknown Fe-B-C compound in the boride layer was suggested. And precipitates in the diffusion zone was $Fe_3(B,C)$. The concentration of Si and precipitation of $Fe_3(B,C)$ in the ${\alpha}$ layer raised the hardness of this Zone. The depth and hardness of boride layer increased with the increase of treating temperature and tim. But high temperature (over $950^{\circ}C)$ caused pore at graphite position and long treating time (5hrs) sometimes caused formation of graphite layer beneath the boride layer. So, for the practical application of borided cast iron, treating in short time and at low temperature was recommended. And for ductile cast iron, ferritizing or pearlitizing heat treatment was seemmed to be possible at the same time with boriding. The graphite in the boride layer was deeply concerned with the qualitx and characteristics of the boride layer. And it greatly influenced on the shape of the boride phase, structure of the boride layer. Generally speaking, the existance of graphite restrained the growth of the boride phase. But the boundary between the gsaphite and the matrix acted as the shortcut of boron diffusion. So, for gray cast iron, the graphite layed length-wise led the formation of boride layer.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2006.05a
/
pp.1334-1337
/
2006
System identification is the field of modeling dynamic systems from experimental data. As a modeling technique, we can mention finite element method (FEM). In addition, we are able to measure modal data as the experimental data. The system can be generally categorized into a gray box and black box. In the gray box, we know mathematical model of a system, but we don't know structural parameters exactly, so we need to estimate structural parameters. In the black box, we don't know a system completely, so we need to identify system from nothing. To date, various system identification methods have been developed. Among them, we introduce system realization theory which uses Hankel matrix and Eigensystem Realization Algorithm (ERA) that enable us to identify modal parameters from noisy measurement data. Although we obtain noise-free data, however, we are likely to face difficulties in identifying a structure with hidden modes. Hidden modes can be occurred when the input or output position comes to a nodal point. If we change a system using a mode decoupling controller, the hidden modes can be revealed. Because we know the perturbation quantities in a closed loop system with the controller, we can realize an original system by subtracting perturbation quantities from the closed loop system. In this paper, we propose a novel method to identify a structure with hidden modes using the mode decoupling controller and the associated example is given for illustration.
The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.
KIPS Transactions on Software and Data Engineering
/
v.2
no.12
/
pp.889-898
/
2013
Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.
Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
Journal of the Korean earth science society
/
v.41
no.1
/
pp.31-39
/
2020
Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.
Journal of the Korea Society of Computer and Information
/
v.16
no.10
/
pp.83-92
/
2011
The aim of this study is to evaluate whether 3D nuclear chromatin texture features are significant in recognizing the progression of cervical cancer. In particular, we assessed that our method could detect subtle differences in the chromatin pattern of seemingly normal cells on specimens with malignancy. We extracted nuclear texture features based on 3D GLCM(Gray Level Co occurrence Matrix) and 3D Wavelet transform from 100 cell volume data for each group (Normal, LSIL and HSIL). To evaluate the feasibility of 3D chromatin texture analysis, we compared the correct classification rate for each of the classifiers using them. In addition to this, we compared the correct classification rates for the classifiers using the proposed 3D nuclear texture features and the 2D nuclear texture features which were extracted in the same way. The results showed that the classifier using the 3D nuclear texture features provided better results. This means our method could improve the accuracy and reproducibility of quantification of cervical cell.
Red tide is becoming hot issue of environmental problem worldwide since the 1990. Advanced nations, are progressing study that detect red tide area on early time using satellite for sea. But, our country most seashores bends serious. Also because there are a lot of turbid method streams on coast, hard to detect small red tide area by satellite for sea that is low resolution. Also, method by sea color that use one feature of satellite image for sea of existent red tide area detection was most. In this way, have a few feature in image with sea color and it can cause false negative mistake that detect red tide area. Therefore, in this paper, acquired texture information to use GLCM(Gray Level Co occurrence Matrix)'s texture 6 information about high definition land satellite south Coast image. Removed needless component reducing dimension through principal component analysis from this information. And changed into 2 principal component accumulation images, Experiment result 2 principal component conversion accumulation image's eigenvalues were 94.6%. When component with red tide area that uses only sea color image and all principal component image. displayed more correct result. And divided as quantitative,, it compares with turbid stream and the sea that red tide does not exist using statistical feature analysis about texture.
Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.3
/
pp.187-196
/
2020
In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.
KIPS Transactions on Software and Data Engineering
/
v.2
no.1
/
pp.55-64
/
2013
Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.
Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1407-1422
/
2022
This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.