• 제목/요약/키워드: gravity load

검색결과 371건 처리시간 0.026초

공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가 (Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant)

  • 정성용;윤기봉;팜반듀엣;유종민;김지윤
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구 (A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD)

  • 강희복;김교준;박승균;김종렬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.149-155
    • /
    • 2008
  • 최근 교통소통의 필수적인 수단으로 많은 도로가 건설 중에 있으며 기 시공된 도로 등은 차량의 통행과 기후 등의 여러 요인에 의해 내하력이 저하되고 있다. 본 연구에 적용된 지반의 흙의 종류와 소성지수 그리고 비중은 각각 SC, 12.2%, 2.66이였으며 최대건조단위중량, 최적함수비, 수정CBR은 각각 $1.895g/cm^2$ (수정다짐 D), 13.6%, 16.2%였다. 이러한 지반조건에서 동적콘관입시험의 관입지수로부터 추정한 CBR과 소형 FWD시험의 동적변형계수로부터 환산한 정적변형계수 사이에는 상관계수가 0.90으로 높은 상관성을 나타내었다.

경량합성 패널의 압축성능 평가에 관한 실험적 연구 (An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel)

  • 이상섭;박금성
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.455-462
    • /
    • 2007
  • 본 논문은 스틸스터드로 구성된 골조에 경량기포 모르터를 충전하여 제작한 경량합성벽체의 압축 실험을 통한 압축 성능의 평가에 대한 연구이다. 경량기포 모르터의 비중(80, 120), 마감재(경량기포 모르터, OSB, 석고보드) 및 패널의 고정 방식을 변수로 하여 실험체를 제작 실험하였다. 선행 연구결과와 고정부를 개선시킨 경량합성 벽체의 압축성능에 대해 실험을 통해 조사한 결과, 상세개선으로 인한 경량합성패널의 압축 최대하중은 1.07배, 초기강성은 24배 이상 성능이 크게 향상되었다. 비중과 마감재가 동일한 실험체의 경우에는 최대하중은 2.7배, 초기강성은 15배 이상 압축으로 인한 성능이 크게 향상됨을 알 수 있다. 국내설계기준에 의해 계산한 최대하중값과 실험값은 비교적 잘 일치하였다.

강구조 특수모멘트골조의 보 소성변형요구량 평가 (Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames)

  • 엄태성
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.405-415
    • /
    • 2011
  • 건축물의 안전한 내진설계를 위해서는 층간변위비 뿐만 아니라 부재에 요구되는 소성변형을 평가하여야 한다. 본 연구에서는 복잡한 비선형해석 없이 탄성해석을 사용하여 강기둥-약보로 설계된 철골 특수모멘트골조의 보에 요구되는 소성변형을 평가하는 간편한 방법을 개발하였다. 개발한 방법은 탄성해석 결과를 근거로 모멘트 재분배, 기둥 단면치수 및 보 소성힌지 이동, 패널존 변형, 중력하중, 변형경화 거동 등을 고려하여 보의 소성변형각을 직접적으로 예측한다. 또한 가새골조 또는 코어벽 등 횡력 저항구조와 모멘트골조의 상호 작용인 로킹 효과 고려한다. 검증을 위하여 강기둥-약보로 설계된 6층 특수모멘트골조에 제안된 방법을 적용하여 보의 소성변형각을 예측하고, 그 결과를 비선형 해석 결과와 비교하였다. 검증 결과, 제안된 방법은 설계 변수에 따른 보의 소성변형각을 합리적으로 예측하는 것으로 나타났다.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

준불연 외단열시스템의 역학적 특성에 관한 연구 (Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance)

  • 최기선;하수경;오근영;박금성;류화성
    • 한국건축시공학회지
    • /
    • 제21권5호
    • /
    • pp.507-518
    • /
    • 2021
  • 외단열시스템에서 준불연 성능을 확보한 부착식 탄산칼슘계 복합단열판은 효과적인 단열성능과 화재안전성을 강화한 것으로, 본 연구에서는 준불연 복합단열판을 대상으로 부착식 준불연 외단열시스템의 구조설계 기초데이터를 확보하기 위하여 복합단열판 및 구성재의 역학적 시험을 수행하였다. 국내외 시험규격을 참조하여 시험체를 제작하였으며, 인장강도, 압축강도, 굴곡강도, 전단강도를 시험 평가하였다. 시험결과로부터 준불연 복합단열판의 강도특성치를 도출하였고, 현행 KS M ISO 4898에서 제시하는 최소 요구물성을 확보하고 있는 것을 검증하였다. 또한, 본 연구에서 사용한 준불연 외단열시스템은 지속적 중량 하중을 받지 않는 벽체의 외단열시스템으로 사용이 가능한 것을 확인하였다.

Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios;Iakovidis, Pantelis E.
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.115-129
    • /
    • 2019
  • The effectiveness of an innovative method for the earthquake-resistant rehabilitation of existing poorly detailed reinforced concrete (RC) structures is experimentally investigated herein. Eight column subassemblages were subjected to earthquake-type loading and their hysteretic behaviour was evaluated. Four of the specimens were identical and representative of columns found in RC structures designed in the 1950s-70s period for gravity load only. These original specimens were subjected to cyclic lateral deformations and developed brittle failure mechanisms. Three of the damaged specimens were subsequently retrofitted with innovative high-strength steel fiber-reinforced concrete (HSSFC) jackets. The main variables examined were the jacket width and the contribution of mesh steel reinforcement in the seismic performance of the enhanced columns. The influence of steel fiber volume fraction was also examined using test results of a previous work of Tsonos et al. (2017). The fourth earthquake damaged subassemblage was strengthened with a conventional RC jacket and was subjected to the same lateral displacement history as the other three retrofitted columns. The seismic behaviour of the subassemblages strengthened according to the proposed retrofit scheme was evaluated with respect to that of the original specimens and that of the column strengthened with the conventional RC jacket. Test results clearly demonstrated that the HSSFC jackets effectively prevented the development of shear failure mechanisms, while ensuring a ductile seismic response similar to that of the subassemblage retrofitted with the conventional RC jacket. Ultimately, an indisputable superiority in the overall seismic performance of the strengthened columns was achieved with respect to the original specimens.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

페로니켈슬래그 순환자원을 활용한 점토기와의 성능평가 (Study of Characteristics of Clay Roof Tiles Using Ferro Nickle Slag Recycled Resources)

  • 김순호
    • 한국건축시공학회지
    • /
    • 제21권4호
    • /
    • pp.281-291
    • /
    • 2021
  • 건설산업의 환경부하를 최소화하기 위해서는 건축 자재의 친환경성을 강화하고 내구수명을 연장하여 신축 및 철거를 최소화의 필요성이 있다. 따라서 이러한 문제점을 개선하기 위해 많은 한옥의 지붕마감 공법이 제안되었지만 현재는 경제성, 무게, 내구성 등의 문제점으로 기존공법을 사용하는 추세이다. 한옥 건물의 지붕재로 사용되는 점토기와의 제조방법에 경주에서 생산된 기와용 점토와 고령토와 S사의 재활용 FNS(Ferro Nickel Slag) 활용하여 문제를 해결하고자 연구를 진행하여 한국전통 점토기와의 개발 특성과 재료를 연구하고 관련 기초자료를 제시한다.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.