• Title/Summary/Keyword: gravitational force

Search Result 145, Processing Time 0.023 seconds

Viscosity Measurement of Non-Newtonian Fluids Using the Transient Flow Phenomena in the Capillary Tube (모세관내 과도유동현상을 이용한 비뉴턴유체의 점도측정)

  • Cho, Min-Tae;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.738-741
    • /
    • 2001
  • The purpose of the present study is to measure the viscosity of liquid in the capillary tube viscometer using the unsteady flow concept. The capillary tube viscometer is consisted of a small cylindrical reservoir, capillary tubes, and the mass flow rate measuring system interfaced with computer. Two capillary tubes with 1.152 and 3.002 mm I.D. are used to determine the diameter effects on the viscosity measurements. The instantaneous shear rate and gravitational driving force in the capillary tube are determined by measuring the mass flow rate through the capillary tube instantaneously. The measured viscosities of water and aqueous Separan solution are in good agreement with the reported experimental data.

  • PDF

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF

Finite element analysis of flow and heat transfer in solid particle moving beds of heat exchanger (고체입자를 이용한 열교환기에서의 유동 및 열전달의 유한요소해석)

  • Lee, Wan-Sul;Youn, sung-kie;Park, Sang-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.743-752
    • /
    • 1998
  • Numerical analysis for the flow and heat transfer in solid particle moving beds of heat exchangers is presented. The solid particle flow through the bundle of heat source tubes by the gravitational force. The heat energy is transferred through the direct contact of particles with the heat source tubes. The viscous-plastic fluid model and the convective heat transfer model are employed in the analysis. The flow field dominantly influences the total heat transfer in a heat exchanger. As the velocities of solid particles around the heat source tubes increase, the amount of heat transfer from the tubes increases. Some examples are presented to show the performance of the numerical model. The flow effect on the heat transfer is also studied through the examples.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

Thermal Performance of a Thermosiphon with a Step-Change Elevation for Medium-temperature Solar Thermal Applications (중온 태양열 응용을 위해 수평 단차를 갖는 열사이펀의 열적 성능)

  • Lee, Se-Kwon;Jung, Eui-Guk;Boo, Joon-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.251-254
    • /
    • 2009
  • Thermal performance of a thermosiphon for medium-temperature solar thermal application was investigated. The working fluid was Dowtherm A and the container was made of STS 316L. The thermosiphon had a outer diameter of 12.7 mm and a total length of 2 m, where the evaporator and the condenser had the same length of 0.3 m and the adiabatic section was 1.4 m. Both the evaporator and the condenser were aligned horizontal with an elevation difference of 0.18 m to utilize the gravitational force for the working-fluid return. The optimum fill charge ratio of the working fluid was investigated to obtain the maximum heat transport with the lowest thermal resistance. The maximun input thermal load was 500 W and thermal resistance was $0.60^{\circ}C/W$.

  • PDF

Development of a Climbing Robot for Inspection of Bridge Cable (교량 케이블 점검용 이동 로봇 개발)

  • Kim, Ho-Moon;Cho, Kyeong-Ho;Jin, Young-Hoon;Liu, Fengyi;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • In this paper, we propose a cable climbing robot which can climb up and down the cables in the bridges. The robot mechanism consists of three parts: a wheel based driving mechanism, adhesion mechanism, and safe landing mechanism. The wheel based driving mechanism is driven by tooth clutches and motors. The adhesion mechanism plays the role of maintaining adhesion force by a combination of pantograph, ball screw, and springs even when the power is lost. The safe landing mechanism is developed for guaranteeing the safety of the robot during operations on cables. It can make the robot fall down with reduced speed by dissipating the gravitational forces. The robot mechanism is designed and manufactured for validating its effectiveness.

A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

  • KIM JUNSEOK;SUR JEANMAN
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.179-193
    • /
    • 2005
  • We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type $h_t+f_y(h) = -{\in}^3{\nabla}{\cdot}(M(h){\nabla}{\triangle}h)$ arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.

A Study on Flammable Mixture Formation in a Rectangular Enclosure with Gaseous Fuel Leak from the Bottom (직사각형 밀폐공간내에 기체연료 밑면 누출시 가연성 혼합기 생성에 관한 연구)

  • Chung, N.K.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 1993
  • Numerical method is applied to predict the time variation behavior of flammable mixture formation in a two dimensional enclosure from the beginning of gas leak. Additionally experimental method is used to consider qualitative aspects. Characteristics of flammable mixture formation such as distribution of flow and fuel mass fraction at various locations in the enclosure are determined for the following parameters: the various locations of leak at the bottom and aspect ratio of the enclosure. In the case of gas leak with small leak velocity from the bottom of enclosure gravitational force affects the formation of flammable mixture. Aspect ratio of the enclosure also affects the formation of flammable mixture. The volume of the region of recirculating flow is dominant factor affecting the formation mixture.

  • PDF

NON-HYDROSTATIC SUPPORT OF PLASMA IN THE SOLAR CHROMOSPHERE AND CORONA

  • Chae, Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.3
    • /
    • pp.55-64
    • /
    • 2010
  • We investigate how plasma structures in the solar chromosphere and corona can extend to altitudes much above hydrostatic scale heights from the solar surface even under the force of gravity. Using a simple modified form of equation of motion in the vertical direction, we argue that there are two extreme ways of non-hydrostatic support: dynamical support and magnetic support. If the vertical acceleration is downward and its magnitude is a significant fraction of gravitational acceleration, non-hydrostatic support is dynamical in nature. Otherwise non-hydrostatic support is static, and magnetic support by horizontal magnetic fields is the only other possibility. We describe what kind of observations are needed in the clarification of the nature of non-hydrostatic support. Observations available so far seem to indicate that spicules in the quiet regions and dynamic fibrils in active regions are dynamically supported whereas the general chromosphere as well as prorninences is magnetically supported. Moreover, it appears that magnetic support is required for plasma in some coronal loops as well. We suspect that the identification of a coronal loop with a simple magnetic flux tube might be wrong in this regard.

Classification of the Length of Ceramic Fibers by Settling Process (중력침강에 의한 세라믹 섬유의 길이분류)

  • 김제균;최광훈;오승진;정윤중;강대갑;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • For the preparation of short ceramic fibers of which average length might be in accordance with the opening size of sieve, e.g., 150${\mu}{\textrm}{m}$ or 300${\mu}{\textrm}{m}$, bulk fibers were grounded on sieve screen by applying both compressing and shearing force, and passed through the sieve screen. The grounded fibers were subjected to gravitational settling processes. The classified fibers were observed by scanning electron microscopy and the length of each fiber was measured to correlate the average length with the opening size of the sieve used for grinding bulk fibers. Theoretical analysis show that a free settling technique is ineffective for the classification of fibers by length compared with that of particles. The average lengths of classified fibers estimated by scanning electron microscopy were in good agreement with those obtained by relative packing volume of the fibers. Accordingly, it is confirmed that average fiber lengths can be determined from bulk volume data without photographing, counting and averaging results for hundreds of fibers.

  • PDF