• Title/Summary/Keyword: gravitational force

Search Result 145, Processing Time 0.022 seconds

STUDY ON THE BEHAVIOR OF NEEDLES AND SPRINGS FALLING FREELY IN A VISCOUS FLUID (점성 유체중에 자유낙하 하는 니들과 스프링의 거동에 관한 연구)

  • Gowtham, B.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.30-39
    • /
    • 2014
  • We report in this paper the analysis of the motion of a needle and a spring in a viscous fluid under the influence of gravitational force. Lateral shift as well as vertical motion of a needle falling in a viscous fluid has been observed from a simple experiment. We also observed the combined rotation and translation of a falling spring. The trajectory and velocity of the falling needle and the spring were obtained by using an image processing technique. We also conducted numerical simulation for both problems. For the falling-needle problem, we employed a theory; but it turns out that significant correction is required for the solutions to match the numerical and experimental data. For the falling spring problem various theoretical formula were tested for their justification, but none of the existing theories can successfully predict the numerical and experimental results.

Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface (햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피)

  • Kim Sung-Gaun
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.

Development of mobile vehicle designed by the guideline of wall-climbing mobile robot using permanent magnetic wheels (영구자석바퀴를 이용한 벽면 이동로봇의 설계치침에 의한 이동체 개발)

  • 한승철;이화조;김은찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1676-1681
    • /
    • 2003
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline. and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application. as the attaching force ortho vehicle can be affected by its posture.

  • PDF

The Effect of Force and Motion Conceptions into the Kinematics Graph Construction (대학생의 운동학 그래프 작성에 대한 역학 개념의 효과)

  • Kwon, Sung-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.383-393
    • /
    • 1997
  • In order to study the effect of student's conceptions about force and motion into the graph construction in kinematics in college physics course, the tasks of constructing the qualitative graph in the similar problem context used in force conception was asked to the first 74 and third 97 student teacher in teachers' university. The frequencies analysis showed that student teachers had the naive conceptions that the throwing force was still acted to a upwarding ball. They also had the popular Aristotelian views about motion. These naive conceptions coexisted with the scientific conception about gravitational force. In a simple pendulum problem no one had the correct acceleration concepts which varies the direction in swing. This result suggest that student teacher had more difficulties in a acceleration problem than in a velocity problem In v-t and a-t graph construction tasks, the number of categories of a-t graphs were more than that of v-t graphs. There were many graph errors in a sign of velocity and acceleration. The acceleration conceptions without the relations of changes in velocity made the kinematics graphs more various shapes. The force and motion conceptions influenced the ability to construct the kinematics graphs.

  • PDF

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 2- Design of Mobile Vehicle) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 2- 이동체 설계))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.77-84
    • /
    • 2004
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline, and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application, as the attaching force of the vehicle can be affected by its posture.

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

A study on the computer simulation model of the closed moving system using the nutation force (폐쇄된 계의 장동 힘에 의한 이동장치의 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.331-336
    • /
    • 2005
  • The closed movement produced vertically on the position of a motor is a notation movement produced by a notation force , while the horizontal movement can be shown by the coriolis force and the transverse force of realizing that the closed movement of the closed system is to be rotation motion. The notation movement is a vertical closed movement and by searching the equation which becomes an equation model, after comparing the simulation data from the equation model with data of a real device to use it into the computer simulation model, the additional variable elements were decided. As the result, the energy imbalance element is added as a variable about load which is relevant to friction coefficient and pole of a motor in the gravitational field. The simulation can be applied as a real physical law of the graphic game and haptic program.

  • PDF

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly (노인용 보행보조기의 안전성 향상을 위한 노면 상태 및 기울기 추정)

  • Park, Gi-Dong;Kim, Jong-Hwa;Choi, Jin-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • This paper proposes a method for estimating the road surface condition and tilt angle using an inertial measurement unit (IMU) to improve the safety in the use of mobility aids for the elderly. The measurements of the accelerometers of the IMU usually include the accelerations caused by not only the gravitational force but also linear and rotational motions. Thus, the gravitational accelerations are first extracted using several physical constraints and then incorporated into the Kalman filter to estimate the tilt angle. In addition, because the magnitudes of the accelerations produced by the rotational motions (roll and pitch motions) vary with the road surface condition, a criterion based on such accelerations is presented to classify the condition of the road surface. The obtained road surface condition and tilt angle are finally combined to provide the safety information (e.g., safe, warning, and danger) for the user to improve the walking safety. Experiments were carried out and the results showed that the proposed method can provide the condition of the road surface, the tilt of the road surface, and the safety information correctly.

The Measurement of Oil Globule Size Distribution in the Soymilk Suspended with the Soybean Particle (대두입자가 분산된 두유에서 기름입자의 입도분포 측정)

  • Chung, J.B.;Yoon, S.K.;Sohn, H.S.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 1990
  • Although the measurement of oil globule size distribution is necessary to detect the process of demulsification, the reasonable methodology for its measurement has not been suggested because the solution of soymilk contains insoluble soybean particle and the protein to interfere with the detection of oil globule or oil content. The oil globule size distribution was measured by the homogeneous suspension and cumulative method under gravitational force or centrifugal force, which were modified with Stokes' low. The geometric mean diameter of oil globules in this soymilk was $033{\mu}m\;and\;031{\mu}m$ under gravitational method and centrifugal method, respectively. The differences of oil globule size distribution in the solutions emulsified by different pressures were detected by this method. The mean diameter of the solutions treated at higher pressure was shifted to smaller size and the distribution pattern of the solutions at higher pressure became more compact around the mean diameter.

  • PDF