• Title/Summary/Keyword: gravitation lens

Search Result 5, Processing Time 0.023 seconds

DERIVATION OF THE GRAVITATIONAL MULTI-LENS EQUATION FROM THE LINEAR APPROXIMATION OF EINSTEIN FIELD EQUATION

  • KANG SANGJUN
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.75-80
    • /
    • 2003
  • When a bright astronomical object (source) is gravitationally lensed by a foreground mass (lens), its image appears to be located at different positions. The lens equation describes the relations between the locations of the lens, source, and images. The lens equation used for the description of the lensing behavior caused by a lens system composed of multiple masses has a form with a linear combination of the individual single lens equations. In this paper, we examine the validity of the linear nature of the multi-lens equation based on the general relativistic point of view.

LARGE SCALE MAGNETIC FIELDS IN LENS GALAXIES

  • NARASIMHA D.;CHITRE S. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.355-359
    • /
    • 2004
  • Differential Faraday Rotation measurements between the images of same background source, of multiply-imaged gravitational lens systems can be effectively used to provide a valuable probe to establish the existence of large-scale ordered magnetic fields in lensing galaxies as well as galaxy clusters. Estimates of the magnetic field in lens galaxies, based on the radio polarization measurements do not appear to show any clear evidence for evolution with redhsift of the coherent large scale magnetic field between redshift of 0.9 and the present epoch. However, our method clearly establishes the presence of coherent large scale magnetic field in giant ellitpical galaxies.

STATISTICAL PROPERTIES OF GRAVITATIONAL LENSING IN COSMOLOGICAL MODELS WITH COSMOLOGICAL CONSTANT

  • LEE HYUN-A;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.103-117
    • /
    • 1994
  • To extend the work of Gott, Park, and Lee (1989), statistical properties of gravitational lensing in a wide variety of cosmological models involving non-zero cosmological constant is investigated, using the redshifts of both lens and source and observed angular separation of images for gravitational lens systems. We assume singular isothermal sphere as lensing galaxy in homogenous and isotropic Friedmann­Lemaitre-Robertson- Walker universe, Schechter luminosity function, standard angular diameter distance formula and other galaxy parameters used in Fukugita and Turner (1991). To find the most adequate flat cosmological model and put a limit on the value of dimensionless cosmological constant $\lambda_0$, the mean value of the angular separation of images, probability distribution of angular separation and cumulative probability are calculated for given source and lens redshifts and compared with the observed values through several statistical methods. When there is no angular selection effect, models with highest value of $\lambda_0$ is preferred generally. When the angular selection effects are considered, the preferred model depends on the shape of the selection functions and statistical methods; yet, models with large $\lambda_0$ are preferred in general. However, the present data can not rule out any of the flat universe models with enough confidence. This approach can potentially select out best model. But at the moment, we need more data.

  • PDF

FINDING THE ACCELERATION PARAMETER IN MODIFIED NEWTONIAN DYNAMICS WITH ELLIPTICAL GALAXIES

  • TIAN, YONG;KO, CHUNG-MING
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.381-383
    • /
    • 2015
  • MOdified Newtonian Dynamics (MOND) is an alternative to the dark matter paradigm. MOND asserts that when the magnitude of acceleration is smaller than the acceleration parameter $a_0$, the response of the system to gravity is stronger (larger acceleration) than the one given by Newtonian dynamics. The current value of $a_0$ is obtained mostly by observations of spiral galaxies (rotation curves and the Tully-Fisher relation). We attempt to estimate $a_0$ from the dynamics of elliptical galaxies. We seek elliptical galaxies that act as the lens of gravitational lensing systems and have velocity dispersion data available. We analysed 65 Einstein rings from the Sloan Len ACS survey (SLACS). The mass estimates from gravitation lensing and velocity dispersion agree well with each other, and are consistent with the estimates from population synthesis with a Salpeter IMF. The value of $a_0$ obtained from this analysis agrees with the current value.