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ABSTRACT

When a bright astronomical object (source) is gravitationally lensed by a foreground mass
(lens), its image appears to be located at different positions. The lens equation describes the
relations between the locations of the lens, source, and images. The lens equation used for
the description of the lensing behavior caused by a lens system composed of multiple masses
has a form with a linear combination of the individual single lens equations. In this paper,
we examine the validity of the linear nature of the multi-lens equation based on the general
relativistic point of view.

Key words: gravitation — gravitational lensing

I. INTRODUCTION

The deflection angle of a light ray bent by a point mass lens can be calculated by using the general theory of
relativity. Let D;, and D), are the line of sight distances to an astronomical source (marked by ‘s’) and a foreground
point mass (lens, marked by ‘I’), respectively. Let us consider two planes perpendicular to the line of sight towards

7
the source where one plane is located at the lens distance (lens plane) and the other is located at the source distance
(source plane). If the angular position of the lens on the sky is (Zm, ym), the two components of the projected lens
position in physical units on the lens and source planes are, respectively,
Xnm = zmDio, Yar = ymDio, (1)
XMS = -TmDsoa Y'M‘9 = ymDso~

Assume that an observer is looking at a light ray from a lensed source whose apparent angular position on the
sky is (x,y). The extension of the line of sight towards this position intersects the lens plane at a point A and the
source plane at another point I (corresponding to the position of the image). Then the components of the projected
positions of the points A and I on the lens and source planes are, respectively,

Xa=xDy, Y4 =yDy,,

2
X;= xDsoa Yy = sto-
From eq. (1) and (2), the projected separation between the lens and the ray on the lens plane is computed by
R=[(X4 - Xu)* + (Ya - Yu)"]"/% (3)
The general relativity says the light ray is deflected by an angle of
4GM
= R (4)
with two components of
: Xa—-X Ya-Y
. :a(_AR—M)’ %:a%_ (5)
In physical units, the above relations become
Xs=Xr— aw(Dso - Dlo)a Y=Y - a'y(Dso - D[0)7 (6)

which is so called the ‘lens equation’ for a single point mass.
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II. MULTI-LENS EQUATION

If a lens system is composed of multiple point masses (multi-lens system), the individual masses influence the
bending angle of light. Let us assume that multiple number of point-mass lenses are located at a same distance Dy,
in the front of a point source at Dy,. Each lens component has a mass M; and it is located at (X;,Y:) on the lens
plane. Then the separation between the ray and each lens component is

Ry = [(X = Xi)" + (V = i), (7)

Assuming that each mass contributes to the blending of light with an amount of

4G M;

Q; =

with the two components of
X - X; Y -Y; ()
L Qi = ’

R; Yt ¢ R;
Paczynski (1986) expressed the lens equation for a multi-lens system as a linear combination of individual single
lens equations, i.e.

Uz = O

s 3 s0 D o - ’
Dlo Zaw 0 l ) Y, Dlo Zay, Dlo) (10)

(] k3
which is called as the ‘multi-lens equation’.

The deflecting angle « of the light ray by a point mass, eq. (4), is calculated based on relativistic consideration
about the curved space-time caused by the mass. Similarly, the deflecting angle of the light ray caused by a multi-
lens system should be also based on the relativistic equation of motion of the light wave in the curved space-time.
However, in the multi-lens equation eq. (10), the deflecting angle « is calculated as if the bending angles by the
individual masses behave as if they are vectors in flat space-time so that the total deflecting angle can be calculated
by a vector sum in the flat space-time. As a result, it is conceptionally confusing whether the multi-lens equation
in eq. (10) is based on relativistic consideration. We, therefore, examine the validity of the linear nature of the
multi-lens equatin by computing the relativistic equation of motion in a weak gravitational field.

III. DERIVATION OF MULTI-LENS EQUATION BY THE GENERAL RELATIVISTIC
CALCULATION

The linear approximation of the field equation for gravitation can be written as (Iranian & Ruffing 1994)
N P = —gTHY, (11)

with the Gauge condition of
Oud*” =0, (12)

where & is a constant and the Greek indexes represent u, v = 0,1,2,3, respectively. The adopted summation
convention for the repeating indexes and the tensor fields ¢*¥ are related to the metric tensor g, as follows. In the
weak gravitational field, the metric tensor can be written as

Guv = Mo + "Eh;w: (13)

where 7, is the Minkowski tensor (the metric tensor of flat space time) and h,, is the weak gravitational field
which can be written in the terms of ¢** as

N, ()

where ¢ = ¢4.
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In eq. (11) the energy-momentum tensor T#” is the total energy-momentum tensor of matter plus gravitation,
ie.

T = TH + 4, (15)

where T(”n':) and t*¥ are the energy-momentum tensors of matter and gravitation, respectively. The interaction
energy of matter and gravitation is always included in T(‘::l’ ) since the interaction energy density is non-zero only at
the place where there is matter. The energy-momentum tensor #*¥ of gravitational field is quadratic in the field
variables. Then, in the weak gravitational field, t*¥ can be ignored since the order of ¢#¥ is much less than unity.

Consider the time-independent field equation for the weak gravitational field surrounding a discrete mass distri-
bution, where the individual point masses are M;. In the exterior of each mass, T(‘::) =0, and thus we can write
the field equation and the gauge condition as

Il

AR 0, (16)
A = 0. (17)

With the assumption that the field is time independent, eq. (16) reduces into a form of
—-V2¢* = 0. (18)

Let the position of each mass is located at r; = X;¢ + Y;j in the lens plane. Then the solution of the equation for
each mass is

c
o =3 2 (19)

where C¥ is a constant matrix and R; = VX = X)2+ (Y - Y;)? + Z2 is the distance from the point mass to the
field point » = Xi+Yj 4+ Zk. One may include a constant term in the solution eq. (19), but since we assume that
@*¥ — 0 as r — o0, there is no such a term. From eq. (19) and Eq.(16), one finds

Y Clvo (%) =0,
1

K3

or

k_ .k
kv _'(‘T - ) _
> [Ci —m——] =0, (20)
I (2
where k = 1, 2, 3 and z' = X, 22 =Y, 2° = Z, respectively. This expression is valid for all (z* — z¥) as long as
C® = (. Hence the only nonzero component of C is C9°.

From eq. (14), it follows that

Cooiy 1 Coo(i)

R; 24 R; (1)

1
hoo = oo — 5%0@s = Z
i

This determines the value of C?° because hgo is proportional to the Newtonian potential in the weak gravitational
field and its value is

2 GM;
hoo = = <— i —Ri > . | (22)
Hence Coo;) = —4GM;/k and v
=223 .28 0 0 0
s 7 Ri
0 0 00
py _
¢ 0 0 0 O (23)
0 000

The corresponding expression for h, is
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(24)

0
0
0
G M;
_%T Zi“ﬁ?

Note that since the Newtonian potential of the mass distribution M; is ® = — Y, GM;/R;, eq. (24) can also be
written as

2 0 0 0
0 2 0 o0
=g 5 o= (25)
0 0 o0 22
Substituting eq. (25) into eq. (13) yields the weak field approximation of the metric tensor,
Guv = Tuw + Kl
1+2% 0 0 0
B 0 —(1-29) 0 0
B 0 0 —(1-29) 0 ’ (26)
0 0 0 —(1 - 2)

Now we consider the equation of motion for a particle in the space-time where the metric is given in eq. (26).
The equation of motion for a particle in a weak gravitational field is
du,,

K
&+ (hueputu? = Shag utu?) = 0, (27)

where u,, is the four-velocity vector and dr is the proper time interval. Note that according to eq. (27), the motion
of a particle in a gravitational field is independent of the mass of the particle. To find out how light propagates in
a gravitational field, we adopt the view that light is composed of particles (photons). This permits us to use the
relativistic equation of motion for a particle in the gravitational field [see eq. (27)]. However, since the mass of the
photon is zero, and thus one must rewrite the equation of motion into a different form.

Multiplication of mdr into eq. (27) yields

d(ma,) + (Khye pmutuPdr — ghag,umuauﬂch—) =0. (28)
By introducing p, = mu, and dz? = uPdr, the above equation becomes

K
dp, + (Khua,ﬁp“ - i,-haﬁ,upa) dz® = 0. (29)

In this equation, neither m nor dr appears explicitly. Hence, the equation can be applied to a massless photon.
This tells us how the photon momentum is changed by the gravitational field, enabling us to calculate the deflection
of a light ray passing through the gravitational field. For such a calculation, we can treat the factor p® in the
second term of eq. (29) as a constant because any non-constant portion in p® is of order k, and thus would make a
negligible contribution. The net change in p, produced during the photon’s passage through the gravitational field
is, therefore, given as a simple integral

oo 1
Ap, = —kp® / (h,m,ﬁ - 5haﬁ,u> dz?. (30)

-0
Here it is assumed that the integration is performed along a straight trajectory under the assumption that the
light is deflected by a small angle. The first term on the right side of eq. (30) can be omitted since [ h,q gdz” =
hua(00) = hyo(—o0), which is zero because the field hy, is zero at an infinite distance from the gravitating mass.
Then the expression for the momentum change can be written into a more compact form of

& o0
Ap, = —ipo‘/ haﬁ,udzﬁ. (31)

— 00
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Let us consider a ray of light passing a point 7o = Xoi + Yo7 on the lens plane. Taking the z-axis along the
direction of the light incidence, we see that the displacement along the light trajectory and the momentum vector
are, respectively,

12

dz® (dt,0,0,dz) = (dz,0,0,dz), (32)
p* =~ (¥°,0,0,p%). (33)

Here we adopt natural units, where ¢ = 1. Inserting eq. (32) and (33) into eq. (31), we obtain
Apo = 0, (34)

since hqgp is time independent and
K o0
Apy = §p3/ (hoo,k + hos.k + hsox + has x)dz. (35)
-0

For a weak gravitational field, the terms hgs and hgo vanish and hog = hzz = 2®/k, where ® is the Newtonian
gravitational potential, cf. eq. (25). For a multi-lens system, the Newtonian potential has a form

GM;

=- . 36
;\/(X—X,-)2+(Y—Yi)2’+Z2 (36)
Hence eq. (35) can be rewritten as
K [e o]
Apy 5193 / (hoo,k + has,k)dz
— 00
< 9d
—  _9p3 il =
= =2p /_oo Bk 1PodZ, for k=1, 2. (37)
One find that Apsz = 0 and
0% _ GM;(Xo — X3)
Azl 3/2°
Oz o i ((XO _ Xz)2 + (Yb _ Yl)2 + Z2)
(38)
a® _ GM;(Yy - Y;)
a1 — 7
9y Iro : ((Xo— X;)2 + (Yo — ;)2 +Z2)
From eq. (38), the components of the photon momentum can be written as
Ap: = —p1= 2p3/ [Z CM;(Xo — Xo) 3/2]dZ
i ((Xo — X2+ (Yo - V)2 + Zz)
GM; (Xo - X))
= —4p, , 39
v o v 39
GM;(Yo — V3)
Apy = —py=2p° / [Z 3/2]UZZ
T ((XO— )2+ Yo - Y )+Z2)
GM YE) -Y)
= —dp,
P [Z (Xo— X2+ (Y - Y)2] (40)
From these expressions, one can compute the deflection angle caused by a multi-lens plane,
Apm 4G ]V[l(Xo - Xl)
Oy = —2 = —|— 41
Y ops [ Z(Xo—Xi)Q‘i‘(Yb—Y)Q]’ (41)
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and

Substituting eq. (41) and (42) into the eq. (6), one finds the expression for a multi-lens system,

&gz_[ﬁ

D2 c?

X =

I

Ys

KANG

M;(Yo - Y5)
Z (Xo— Xi)* + (Yo - Yz)2]

i

D
XO Dj: - ez(Dso - Dlo)a
D
YOD—S" —0y(Dso — Dyo).
lo

In terms of physical separations, the lens equation becomes

D
Xo=2 -6,(D
0 Dlo z(
Dso
XO Dlo - (Dso

D

so Dlo)

4G M;i(Xo — X;)
— Dlo) 62 zl: (XO _Xi)2 + (YO _ }/z’)z,

}/0—32 - gy(Dso - Dlo)

Dlo
DSO
Dlo

Yo

X2+ (Yo -Y)*

4G M;(Yo - Y)
(Dso - DIO)C_Z ; (XO _

One finds that these expressions are identical to the form in eq. (10).

IV. CONCLUSION

(42)

(43)

(44)

(45)

(46)

We derive an expression for the deflection angle of the light ray caused by multiple masses by using the relativistic
calculation and confirm that the lens equation for a multi-lens system can be written as a linear combination of the

single lens equations of the individual lens components.
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