• Title/Summary/Keyword: graphite/epoxy

Search Result 136, Processing Time 0.02 seconds

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

Evaluation of Static Stability of Hybrid Carbody Structures of Korean Tilting Train eXpress Including Degradation Effects of Composite Materials under Ground Environments (지상환경하에서 복합재료의 물성저하를 고려한 한국형 틸팅열차 하이브리드 차체 구조물의 정적안정성 평가)

  • Shin, Kwang-Bok;Hahn, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.807-815
    • /
    • 2004
  • In order to evaluate the static stability of hybrid carbody structures of Korean Tilting Train eXpress(TTX) caused by degradation of composites under ground environments, T300/AD6005 graphite/epoxy composite specimens were exposed to accelerated environmental conditions including ultraviolet radiation, temperature and moisture fer 2000 hours. It was found that the stiffness and strength of composites after aging were lower than those of unexposed specimens, and decreased as the aging time increases. The values of the degraded properties were used in the static analysis to check the static stability of hybrid carbody structures caused by environmental degradation of composites. The results shown that the structural stability of hybrid carbody structures was affected by the degradation of composites after exposure to accelerated aging environments.

Graphite/Epoxy로 만든 두꺼운 관의 저속 충격손상에 관한 연구

  • 김형원;윤영주;나성엽
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.24-24
    • /
    • 2000
  • 작업 중 공구를 관에 떨어뜨리거나 작업하기 위해 관을 이동하던 중 다른 물체에 부딪힐 경우 복합재로 만들어진 관이 손상을 입게 되는 경우가 생기는데 관이 상황에 따라 얼마나 손상을 입었는지가 본 연구의 관심이다. 충격자는 직경이 25.4mm와 12.7mm인 반구형 2종류와 모서리의 직경이 15mm인 원추형 1종류로 각각 무게가 다르며, 떨어뜨리는 자유낙하 높이는 120mm에서 700mm로 종류에 따라 간격을 달리했다. 실험 장치로는 Dynatup 8250을 사용했으며 충격에너지, 최대충격하중, 충격변위, contact diameter를 측정했다. 시험 후 시편은 방사선 촬영을 하여 충격자의 종류에 따라 손상의 정도가 어떻게 다른지를 파악했다. 직경이 25.4mm인 반구형의 충격자는 표면의 손상은 적었으나 복합재 관의 내부에 delamination이 많이 생겼으며 직경이 12.7mm인 반구형의 충격자는 표면의 손상이 심했으나 내부의 delamination이 상대적으로 적었다. Contact diameter와 최대충격하중과의 관계는 실험치와 이론치가 잘 일치했으나 Kinetic energy와 최대충격하중과의 관계는 실험치와 이론치의 차이가 있었다.

  • PDF

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy (열-전기 유사성을 이용한 복합재료의 열전도도 예측)

  • 조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

Actuating Characteristics of a Piezoceramic fiber Composite Actuator (압전섬유 복합재 엑츄에이터의 거동 특성)

  • Koo, Kun-Hyung;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.53-56
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material and actuator shape. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

  • PDF

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

Warping Analysis of Unsymmetric Laminated Composites (비대칭 복합적층판 의 Warping 해석)

  • 전완주;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.404-409
    • /
    • 1983
  • The warping of unsymmetric laminated composites is induced by residual curing stress at the room temperature. Classical lamination theory (C.L.T.) predicts the room temperature shapes of all unsymmetric laminates to be a saddle. Experimental observations, however, indicate some unsymmetric laminated composites have cylindrical room temperature shapes. This anomalous behavior is explained by the extention of C.L.T. which involves Von Karman's large deflection theory. It is shown that, depending on the thickness, width, length, curing temperature and room temperature of the laminate, critical boundaries of the shape change are determined. Theoretical predictions are compared with experimental results of Toray Graphite/Epoxy {O$_{n}$/90$_{n}$}$_{T}$./....

Numerical simulation of hypervelocity impacts on laminated composite plate targets using SPH method (SPH 기법을 이용한 복합 적층판의 초고속 충돌 해석)

  • Lee, Jae-Hoon;Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.331-336
    • /
    • 2004
  • This paper is concerned with numerical simulation of hypervelocity impacts(HVIs) of a projectile on laminated composite plate targets using SPH method. A one-parameter visco-plasticity model and damage model is used to describe the HVIs response of composite materials. The numerical simulation was carried out for a steel projectile striking to aluminum plate targets and for an aluminum projectile striking to laminated graphite/epoxy (Gr/Ep) composite plate targets. Through the numerical simulation, comparison with the HVIs response of isotropic materials and composite materials is discussed.

  • PDF

Numerical Evaluation of Phase Velocity and Attenuation of Ultrasonic Waves in Fiber-Reinforced Composites Using the Mass-Spring-Dashpot Lattice Model

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.483-495
    • /
    • 2008
  • The paper presents a numerical study to evaluate the phase velocities and attenuations of the average longitudinal and shear ultrasonic waves resulting from multiple scattering in fiber-reinforced composites. A computational procedure developed in this work is first used to produce a random, yet largely even distribution of fibers. Both the viscoelastic epoxy matrix and lossless randomly distributed graphite fibers are modeled using the mass-spring-dashpot lattice model, with no damping for the latter. By numerically simulating ultrasonic through-transmission tests using this direct model of composites, phase velocities and attenuations of the longitudinal and shear waves through the composite are found as functions of frequency or fiber concentration. The numerical results are observed to generally agree with the corresponding results in the literature. Discrepancies found in some detail aspects, particularly in the attenuation results, are also addressed.