• Title/Summary/Keyword: graphene nanosheets

Search Result 55, Processing Time 0.036 seconds

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira;Aghapour, Sahar;Charoughchi, Somaiyeh;Abbasi, Farhang;Sarvari, Raana
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.293-300
    • /
    • 2018
  • Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.

Gas Transport Behaviors through Multi-stacked Graphene Oxide Nanosheets (적층된 산화그래핀 분리막의 기체 투과 거동 평가)

  • Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.167-181
    • /
    • 2017
  • Graphene-based materials have been considered as a promising membrane material, due to its easy processability and atomic thickness. In this study, we studied on gas permeation behavior in few-layered GO membranes prepared by spin-coating method. The GO membrane structures were varied by using different GO flake sizes and GO solutions at various pH levels. The GO membranes prepared small flake size show more permeable and selective gas separation properties than large one due to shortening tortuosity. Also gas transport behaviors of the GO membranes are sensitive to slit width for gas diffusion because the pore size of GO membranes ranged from molecular sieving to Knudsen diffusion area. In particular, due to the narrow pore size of GO membranes and highly $CO_2$-philic properties of GO nanosheets, few-layered GO membranes exhibit ultrafast and $CO_2$ selective character in comparison with other gas molecules, which lead to outstanding $CO_2$ capture properties such as $CO_2/H_2$, $CO_2/CH_4$, and $CO_2/N_2$. This unusual gas transport through multi-layered GO nanosheets can explain a unique transport mechanism followed by an adsorption-facilitated diffusion behavior (i.e., surface diffusion mechanism). These findings provide the great insights for designing $CO_2$-selective membrane materials and the practical guidelines for gas transports through slit-like pores and lamellar structures.

Ternary Phased Graphene/Silica/EVOH Nanocomposites Coating Films (삼성분계 그래핀/실리카/EVOH 나노 복합 코팅 필름)

  • Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • Ternary phased graphene/silica/EVOH nanocomposite coating materials were prepared via sol-gel process and solution blending process. From both SEM observations and XRD analysis, the exfoliated structure and dispersion state of graphene nanosheets and silica particles in the nanocomposites as well as the intercalated and exfoliated structure of the prepared graphene oxide were confirmed. The incorporation of GrO and silica at appropriate content resulted in remarkable improvement in oxygen barrier property of the ternary phased nanocompoiste-coated BOPP films, compared with that of binary(silica/EVOH) phased nanocomposite coating films, however, at excess amount of GrO and silica, very slight variation was observed due to incomplete exfoliation, dispersion of graphene tactoids, and formation of micro cracks in the silica clusters. In addition, the transparency of nanocomposite-coated film was investigated by measuring the light transmittance as a function of GrO contents, suggesting the possibility for the application of food packaging films.

Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives (액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성)

  • Choe, Jin-Yeong;Kim, Yong-Jae;Lee, Chang-Seop
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.533-540
    • /
    • 2018
  • Graphene has been reported to be an excellent lubricant additive that reduces friction and wear when coated on the surface of various materials or when dispersed in lubricants as an atomic thin material with the low surface energy. In this study, alkyl functionalized graphene oxide (FGO) nanosheets for oil-based lubricant additives were prepared by using three types of alkyl chloride chemicals (butyl chloride, octyl chloride, and tetradecyl chloride). The chemical and structural properties of the synthesized FGOs were analyzed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). The synthesized FGOs were dispersed at 0.02 wt% in PAO-0W40 oil and its tribological characteristics were investigated using a high frequency friction/wear tester. The friction coefficient and the wear track width of poly alpha olefin (PAO) oil added with FGO-14 were tested by a ball-on-disk method, and the measured results were reduced by ~5.88 and ~3.8%, respectively compared with those of the conventional PAO oil. Thus, it was found that the wear resistance of PAO oil was improved. In this study, we demonstrated the successful functionalization of GO as well as the improvement of dispersion stability and tribological characteristics of FGOs based on various alkyl chain lengths.

Growth of Two-Dimensional Nanostrcutured VO2 on Graphene Nanosheets (그래핀 나노 시트 위에 2차원 나노구조를 갖는 VO2의 성장)

  • Oh, Su-Ar;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • Vanadium dioxide, $VO_2$, is a thermochromic material that exhibits a reversible metal-insulator phase transition at $68^{\circ}C$, which accompanies rapid changes in the optical and electronic properties. To decrease the transition temperature around room temperature, a number of studies have been performed. The phase transition temperature of 1D nanowire $VO_2$ with a 100 nm diameter was reported to be approximately $29^{\circ}C$. In this study, 1D or 2D nanostructured $VO_2$ was grown using the vapor transport method. Vanadium dioxide has a different morphology with the same growth conditions for different substrates. The 1D nanowires $VO_2$ were grown on a Si substrate ($Si{\setminus}SiO_2$(300 nm), whereas the 2D & 3D nanostructured $VO_2$ were grown on an exfoliated graphene nanosheet. The crystallographic properties of the 1D or 2D & 3D nanostructured $VO_2$, which were grown by thermal CVD, and exfoliated-transferred graphene nanosheets on a Si wafer which was used as substrate for the vanadium oxide nanostructures, were analyzed by Raman spectroscopy. The as-grown vanadium oxide nanostructures have a $VO_2$ phase, which are confirmed by Raman spectroscopy.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Residue Free Fabrication of Suspended 2D Nanosheets for in-situ TEM Nanomechanics

  • Sharbidre, Rakesh Sadanand;Byen, Ji Cheol;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Lee, Chang Jun;Hong, Seong-Gu;Bramhe, Sachin;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.627-632
    • /
    • 2018
  • Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers' interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.

Synthesis of Heteroatom-Carbon Nanosheets by Solution Plasma Process (솔루션 플라즈마를 이용한 이종 원소 카본 나노시트의 합성)

  • Hyeon, Gwang-Ryong;Jeong, Gwang-Hu;Park, Il-Cho;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong;Saito, Nagahiro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.114-114
    • /
    • 2018
  • 탄소 재료는 뛰어난 물성에서 다양한 재료로의 응용이 기대되고 있다. 특히, 이종 원소 함유 카본 재료는 전기적 특성과 촉매성의 발현 등 새로운 기능을 카본 재료에 부여할 수 있어서 연료 전지, 에너지 저장, 태양 전지 등에의 응용이 기대되고 있다. 최근, 용액 중의 저온 플라즈마인 솔루션 플라즈마(solution plasma process)를 이용하여 벤젠 용액 등에서 탄소 재료 합성에 성공하였다. 그러나 기존의 연구에서는 솔루션 플라즈마 프로세스를 이용하여 합성한 이종원소 카본은 전도성이 낮아 이종원소의 함유량을 낮추는 고온의 열처리가 필요했다. 따라서 본 연구에서는 우수한 물리적 전기적 특성을 갖는 그래핀(graphene)과 같은 이종 원소 카본 나노시트(heteroatom carbon nanosheets)의 합성 및 메커니즘(mechanism)에 대해 검토하였다. 다양한 이종원소를 포함한 유기용매 안에 바이폴라 펄스 전원에 의한 전압을 두 텅스텐 전극 간에 인가하고, 솔루션 플라즈마를 생성하여 이종원소 카본 재료를 합성했다. 플라즈마 생성은 텅스텐 봉을 전극으로 사용하고 전압을 2.0 kV, 펄스 주파수를 200 kHz, 펄스 폭을 $1.0{\mu}s$, 전극 간 거리를 1.5 mm에서 일정하게 유지하며 200 mL 유기용매 중에서 방전시키는 것으로 재료를 합성했다. 플라즈마 방전 후, 필터을 이용하여 흡인 여과한 뒤 $200^{\circ}C$에서 1 시간 동안 건조 시켰다. 건조 후의 이종원소 카본의 물리적 특성을 원소 분석, X선 회절 법(XRD), 저항률 측정, 투과형 전자 현미경(TEM) 및 라만 분광법, 전자 현미경(SEM), X-선광전자분광기(XPS)등을 이용하여 카본의 형상 및 특성을 분석하였다. 그 결과 다양한 이종원소를 포함한 유기용매 중 2-pyrrolidone을 사용했을 때, 이종 원소 카본 나노시트를 합성하는데 성공하였다. 또한, 이 연구방법을 통해서 솔루션 플라즈마 프로세스를 통한 카본 나노시트 합성의 메커니즘을 규명하였다.

  • PDF