Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.
조직 내에 정보자산들의 숫자가 증가하고, 관련된 취약점의 종류와 개수가 증가함에 따라 조직 내 네트워크에 어떠한 취약점이 존재하는지 파악하는 것이 점차 어려워지고 있다. 취약점 데이터베이스 및 이를 활용한 취약점 분석 관련 정량적 분석 기준들 역시 존재하지만, 각각의 보안전문가들의 주관적인 기준에 따른 평가방식과, 수동적 측정 방법으로 인해 네트워크 시스템의 위험도 및 공격 침투 경로를 정량적 평가에 기반하여 예측하기에 효율적이지 못한 문제가 있다. 본 논문에서는 자동화된 취약점 평가 및 공격 침투 경로 예측 시스템인 HRMS(Hacking and Response Measurement System)를 제안하고, 네트워크 시스템 내 예상 공격 경로를 도출한 결과를 제시하였다. HRMS는 정보자산에 대한 충분한 정보가 주어지지 않았다 하더라도, 기존에 알려진 시스템 또는 어플리케이션의 보안관련 평판치를 취약점 평가지표를 기반으로 계산하여, exploitability를 산정하고 attack graph 경로를 생성한다는 점에서 효율적이라 할 수 있다. 본 논문에서 제안한 HRMS를 이용하여 적극적인 취약점 분석을 통한 보안관리를 할 때에 공격경로 예상을 통한 능동적인 대응책을 마련할 수 있을 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권3호
/
pp.971-989
/
2015
With the development of cloud computing, more and more Web services are deployed on geo-distributed datacenters and are offered to cloud users all over the world. Through service composition technologies, these independent fine-grain services can be integrated to value-added coarse-grain services. During the composition, a number of Web services may provide the same function but differ in performance. In addition, the distribution of cloud datacenters presents a geographically dispersive manner, which elevates the impact of the network on the QoS of composite services. So it is important to select an optimal composition path in terms of QoS when many functionally equivalent services are available. To achieve this objective, we first present a graph model that takes both QoS of Web services and QoS of network into consideration. Then, a novel approach aiming at selecting the optimal composition path that fulfills the user's end-to-end QoS requirements is provided. We evaluate our approach through simulation and compare our method with existing solutions. Results show that our approach significantly outperforms existing solutions in terms of optimality and scalability.
자바스크립트는 현재 웹 사이트, 웹 어플리케이션에서 가장 많이 사용되는 스크립트 언어 중 하나이다. 자바스크립트로 작성된 프로그램은 원본 프로그램 형태로 클라이언트에게 전송되므로 무단 복제, 도용에 쉽게 노출된다. 때문에 자바스크립트 프로그램의 도용을 탐지하기 위한 연구가 필요하다. 현재 일반적으로 프로그램 표절 탐지를 위해 사용되는 자동화 도구들의 경우 고수준의 표절 기법에 적절히 대응하지 못한다. 반면에 프로그램 종속성 그래프에 기반을 둔 기존 연구들의 경우 자바스크립트의 동적인 특징을 적절히 반영하지 못한다. 또한 지나친 일반화로 인해 일부 틀린 판정(false positive)을 보이며 대상 프로그램의 크기가 클 경우 탐지 속도에 문제를 보이고 있다. 본 논문에서는 자바스크립트에 특화된 프로그램 종속성 그래프(이하 JS PDG)와 이를 사용한 도용 탐지 기법을 제안하여 이러한 문제를 해결하고자 한다. 본 논문에서 제안하는 JS PDG는 세분화된 노드 타입을 가지고 있어 기존 PDG와 비교해 보다 정확한 그래프 간 비교를 할 수 있도록 하며 포함하고 있는 노드 타입에 따라 정의되는 JS PDG의 타입은 탐색 범위를 분할을 가능하게 해 전체 도용 탐지 속도가 개선 될 수 있도록 한다. 실험 결과 기존 PDG에서 나타나는 틀린 판정을 확인할 수 있었으며 PDG간 비교 횟수가 줄어들어 도용 탐지 속도가 개선됨을 확인할 수 있었다.
작물 수확량 예측은 토양, 비, 기후, 대기 및 이들의 관계와 같은 다양한 측면으로 인해 다국적 식사와 강력한 수요에 필수적이며, 기후 변화는 농업 생산량에 영향을 미친다. 본 연구에서는 온도, 강수량, 습도 등의 데이터 세트를 운영한다. 현재 연구는 농부와 농업인을 지원하기 위해 다양한 분류기를 사용한 기능 선택에 중점을 두고 있다. 특징 선택 접근법을 활용한 작물 수확량 추정은 96% 정확도를 나타내었다. 특징 선택은 기계학습 모델의 성능에 영향을 미친다. 현재 그래프 분류기의 성능은 81.5%를 나타내며, 특징 선택이 없는 Random Forest 회귀 분석은 78%의 정확도를 나타냈다. 또한, 특징 선택이 없는 의사결정 트리 회귀 분석은 67%의 정확도를 유지하였다. 본 논문은 제시된 10가지 알고리즘을 대상으로 특징 선택 중요성에 대한 실험결과를 나타내었다. 이러한 결과는 작물 분류 연구에 적합한 모델을 선택하는 데 도움이 될 것으로 기대된다.
This paper presents an analytical design method of a passive harmonic filter for a three-phase diode rectifier and uses a new transfer function approach in the analysis and design. The transfer function approach derives an analytical formulation of an utility system including passive filters with a basis of Laplace transform and provides a graphical formulation so that a visualized insight into an interaction between individual filter and system response can be attainted. Harmonic impedance, voltage division and current division transfer function are used as a design tool, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. A simple five-step design procedure is introduced in the filter design, which consists of system analysis, selection of PCC(Point of Common Coupling), filter specification calculation, appropriate filter design for system and filter implementation. Philosophy governing the design procedure is based on a numerical/graphical iterative solution, trial and error with visualization feed-back based on "algebra on the graph". Finally, performance of the designed passive harmonic filter is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th harmonics are decreased within IEEE-519 distortion limits, respectively.
단백질의 기능 예측 모델은 guilt-by-association 개념을 바탕으로 단백질-단백질 상호작용 맵을 이용하고 있다. 이 방법은 목표 단백질이 기능이 알려진 단백질과 상호작용이 없는 경우 기능 예측이 불가능하다. 본 논문에서는 단백질 기능 예측 모델을 K-class 다중 분류 문제로 재 정의하고 단백질-단백질 상호작용 데이터 및 단백질의 알려진 속성 등을 학습 모델에 이용한 단위신경망의 설계와 응용을 제안한다. 제안하는 모델은 Yeast 단백질 데이터의 기능 예측에서 단백질-단백질 상호작용 데이터를 이용하는 방법에 비해 분류 예측율에서 우수한 성능을 보였으며 또한 상호작용이 밝혀지지 않은 단백질의 기능 예측을 할 수 있다.
In GIS-based network analysis, topological measure of network structure can be considered as one of important factors in the urban transportation analysis. Related to this measure, it is known that the connectivity indices such as alpha index and gamma index, which mean degree of network connectivity and complexity on a graph or a circuit, provide fundamental information. On the other hand, shimbel index is one of GIS-based spatial metrics to characterize degree of network concentration. However, the approach using these quantitative indices has not been widely used in practical level yet. In this study, an application program, in complied as extension, running on ArcView- GIS is implemented and demonstrated case examples using basic layers such as road centerline and administrative boundary. In this approach, geo-spatial imagery can be effectively used to actual applications to determine the analysis zone, which is composed of networks to extract these indices. As the results of the implementation and the case examples, it is notified that alpha and gamma indices as well as shimbel index can be used as referential data or auxiliary information for urban planning and transportation planning.
Traffic management is a highly beneficial mechanism for satisfying quality-of-service requirements and overcoming the resource scarcity problems in networks. This paper introduces an optimal connection admission control mechanism to decrease the packet loss ratio and end-to-end delay in cognitive radio sensor networks (CRSNs). This mechanism admits data flows based on the value of information sent by the sensor nodes, the network state, and the estimated required resources of the data flows. The number of required channels of each data flow is estimated using a proposed formula that is inspired by a graph coloring approach. The proposed admission control mechanism is formulated as a semi-Markov decision process and a linear programming problem is derived to obtain the optimal admission control policy for obtaining the maximum reward. Simulation results demonstrate that the proposed mechanism outperforms a recently proposed admission control mechanism in CRSNs.
In this pape, we propose a graph-theoretic approach for solving the allocation problem for the synthesis of datapaths based on multiport memories. An efficient algorithm is devised by using the weighted bipartite matching algorithm to assign variables to each port of memory modules. The proposed algorithm assigns program variables into a minimum number of multiport memory modules such that usage of memory elements and interconnection cost can be kept minimal. Experimental results show that the proposed algorithm generates the datapaths with fewer registers in memory modules and less interconnection cost for several benchmarks available from the literatures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.