References
- B. Schwikowski et al., 'A network of protein-protein interactions in yeast,' Nature Biotechnology, Vol.18, No.3, pp.1257-1261, 2000 https://doi.org/10.1038/82360
- M. Fellenberg et al., 'Integrative Analysis of Protein Interaction Data,' Vol.8, Intelligent Systems for Molecular Biology, AAAI Press, pp.152-161, 2000
- H. Hishigaki et al., 'Assessment of prediction accuracy of protein function from protein-protein interaction data,' Yeast, Vol.18, pp.523-531, 2001 https://doi.org/10.1002/yea.706
- S. Oliver, 'Guilt-by-association goes global,' Nature, Vol.403, pp.601-603, 2000 https://doi.org/10.1038/35001165
- C. L. Tucker et al., 'Towards an understanding of complex protein networks,' TRENDS in cell biology, Vol.11, No.3, pp.l02-106, 2001 https://doi.org/10.1016/S0962-8924(00)01902-4
- J. Cheng et al, 'KDD Cup 2001 Report,' SIGKDD Exploration, Vol.3, No.2, pp.47-64, 2002 https://doi.org/10.1145/507515.507523
- T. Mitchell, Machine Learning, McGraw Hill, 1997
- M. Deng et al., 'Prediction of protein function using protein-protein interaction data,' Proceedings of the IEEE Computer Society Bioinformatics Conferences, 2002
- A. Vazquez, et al.,'Global protein function prediction in protein-protein interaction networks,' Nature Biotechnology, Vol.21, No.6, pp.697-700, 2003 https://doi.org/10.1038/nbt825
- Yonata Bilu and Michal Linial, 'The Advantage of Functional Prediction Based on Clustering of Yeat Genes and Its Correlation with Non-Sequence Based Classifications,' Journal of Computational Biology, Vol.9, No.2, pp.193-210, 2002 https://doi.org/10.1089/10665270252935412
- Xiangyun Wang et al., 'Automated data-driven discovery of motif-based function classifiers,' Information Science, Vol.155, pp.1-18, 2003 https://doi.org/10.1016/S0020-0255(03)00067-7
- Xinghus Lu et al., 'Automatic annotation of protein motif function with Gene Ontology terms,' BMC Bioinformatics, Vol.5, No.122, 2004 https://doi.org/10.1186/1471-2105-5-122
- T. Oyama et al., 'Extraction of knowledge on protein-protein interaction by association rule discovery,' Bioinformatics, Vol.18, No.5, pp.705-714, 2002 https://doi.org/10.1093/bioinformatics/18.5.705
- A. J. C. Sharkey, Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, Springer, 1999
- S. Haykin, Neural Network: A Comprehensive Foundation, Prentice Hall, 1998
- N. Japkowicz, 'The Class Imbalanced Problem: Significance and Strategies,' Proceedings of the 2000 International Conference on Artificial Intelligence(IC-AI'2000), 2000
- N. V. Chawlar et al., 'SMOTE: Synthetic Minority Oversampling Techniques,' Journal of Artificial Intelligence Research, Vol.16, pp.321-357, 2002
- MIPS Yeast Database, http://mips.gsf.de/proj/yeast/
- John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, pp.47-82, 2004
- 황두성, 정재영, '단백질 기능 예측을 위한 그래프 기반 모델링,' 정보처리학회논문지 B, 제 12-B권, 제 2호, 2005 https://doi.org/10.3745/KIPSTB.2005.12B.2.209