• Title/Summary/Keyword: graph-based

Search Result 1,822, Processing Time 0.029 seconds

Design of Quasi-Cyclic Low-Density Parity Check Codes with Large Girth

  • Jing, Long-Jiang;Lin, Jing-Li;Zhu, Wei-Le
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.381-389
    • /
    • 2007
  • In this paper we propose a graph-theoretic method based on linear congruence for constructing low-density parity check (LDPC) codes. In this method, we design a connection graph with three kinds of special paths to ensure that the Tanner graph of the parity check matrix mapped from the connection graph is without short cycles. The new construction method results in a class of (3, ${\rho}$)-regular quasi-cyclic LDPC codes with a girth of 12. Based on the structure of the parity check matrix, the lower bound on the minimum distance of the codes is found. The simulation studies of several proposed LDPC codes demonstrate powerful bit-error-rate performance with iterative decoding in additive white Gaussian noise channels.

  • PDF

A Study on CRM(Center of Rotation Method) based on MST(Minimum Spanning Tree) Matching Algorithm for Fingerprint Recognition

  • Kwon, Hyoung-Ki;Lee, Jun-Ho;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.55.5-55
    • /
    • 2001
  • The MST (Minimum Spanning Tree) matching algorithm had been used for searching the part accord points extracted from the gray level fingerprint image. The method, however, had some limitations. To obtain the relationship between enrolled and inputted fingerprint, the MST was used to generate the tree graph that represent the unique graph for given fingerprint data. From the graph, the accord points are estimated. However, the shape of the graph highly depends on the positions of the minutiae. If there are some pseudo minutiae caused by noise, the shape of the graph will be different In this paper, to overcome the limitations of the MST, we proposed CRM (Center of Rotation Method) algorithm that found the true part accord points. The proposed method is based on the assumption ...

  • PDF

Spatial Reuse Algorithm Using Interference Graph in Millimeter Wave Beamforming Systems

  • Jo, Ohyun;Yoon, Jungmin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • This paper proposes a graph-theatrical approach to optimize spatial reuse by adopting a technique that quantizes the channel information into single bit sub-messages. First, we introduce an interference graph to model the network topology. Based on the interference graph, the computational requirements of the algorithm that computes the optimal spatial reuse factor of each user are reduced to quasilinear time complexity, ideal for practical implementation. We perform a resource allocation procedure that can maximize the efficiency of spatial reuse. The proposed spatial reuse scheme provides advantages in beamforming systems, where in the interference with neighbor nodes can be mitigated by using directional beams. Based on results of system level measurements performed to illustrate the physical interference from practical millimeter wave wireless links, we conclude that the potential of the proposed algorithm is both feasible and promising.

A GraphML-based Visualization Framework for Workflow-Performers' Closeness Centrality Measurements

  • Kim, Min-Joon;Ahn, Hyun;Park, Minjae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3216-3230
    • /
    • 2015
  • A hot-issued research topic in the workflow intelligence arena is the emerging topic of "workflow-supported organizational social networks." These specialized social networks have been proposed to primarily represent the process-driven work-sharing and work-collaborating relationships among the workflow-performers fulfilling a series of workflow-related operations in a workflow-supported organization. We can discover those organizational social networks, and visualize its analysis results as organizational knowledge. In this paper, we are particularly interested in how to visualize the degrees of closeness centralities among workflow-performers by proposing a graphical representation schema based on the Graph Markup Language, which is named to ccWSSN-GraphML. Additionally, we expatiate on the functional expansion of the closeness centralization formulas so as for the visualization framework to handle a group of workflow procedures (or a workflow package) with organizational workflow-performers.

A Dependability Modeling of Software Under Memory Faults for Digital System in Nuclear Power Plants

  • Park, Jong-Gyun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.433-443
    • /
    • 1997
  • In this work, an analytic approach to the dependability of software in the operational phase is suggested with special attention to the hardware fault effects on the software behavior : The hardware faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory which represents the software with graph composed of nodes and arcs. Through proper transformation, the graph can be reduced to a simple two-node graph and the software reliability is derived from this graph. Using this model, we predict the reliability of an application software in the digital system (ILS) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. We also found that the effects of the hardware faults on the software failure should be considered for predicting the software dependability accurately in operation phase, especially for the software which is executed frequently. This modeling method is particularly attractive for the medium size programs such as the microprocessor-based nuclear safety logic program.

  • PDF

Next Location Prediction with a Graph Convolutional Network Based on a Seq2seq Framework

  • Chen, Jianwei;Li, Jianbo;Ahmed, Manzoor;Pang, Junjie;Lu, Minchao;Sun, Xiufang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1909-1928
    • /
    • 2020
  • Predicting human mobility has always been an important task in Location-based Social Network. Previous efforts fail to capture spatial dependence effectively, mainly reflected in weakening the location topology information. In this paper, we propose a neural network-based method which can capture spatial-temporal dependence to predict the next location of a person. Specifically, we involve a graph convolutional network (GCN) based on a seq2seq framework to capture the location topology information and temporal dependence, respectively. The encoder of the seq2seq framework first generates the hidden state and cell state of the historical trajectories. The GCN is then used to generate graph embeddings of the location topology graph. Finally, we predict future trajectories by aggregated temporal dependence and graph embeddings in the decoder. For evaluation, we leverage two real-world datasets, Foursquare and Gowalla. The experimental results demonstrate that our model has a better performance than the compared models.

Constructing Ontology based on Korean Parts of Speech and Applying to Vehicle Services (한국어 품사 기반 온톨로지 구축 방법 및 차량 서비스 적용 방안)

  • Cha, Si-Ho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2021
  • Knowledge graph is a technology that improves search results by using semantic information based on various resources. Therefore, due to these advantages, the knowledge graph is being defined as one of the core research technologies to provide AI-based services recently. However, in the case of the knowledge graph, since the form of knowledge collected from various service domains is defined as plain text, it is very important to be able to analyze the text and understand its meaning. Recently, various lexical dictionaries have been proposed together with the knowledge graph, but since most lexical dictionaries are defined in a language other than Korean, there is a problem in that the corresponding language dictionary cannot be used when providing a Korean knowledge service. To solve this problem, this paper proposes an ontology based on the parts of speech of Korean. The proposed ontology uses 9 parts of speech in Korean to enable the interpretation of words and their semantic meaning through a semantic connection between word class and word class. We also studied various scenarios to apply the proposed ontology to vehicle services.

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.