• Title/Summary/Keyword: grain-boundary

검색결과 1,199건 처리시간 0.023초

니켈기 초내열합금의 파형 결정립계 구조가 보론 편석과 재현 열영향부 액화균열거동에 미치는 영향 (Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy)

  • 홍현욱;최준우;배상현;윤중근;김인수;최백규;김동진;조창용
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.31-38
    • /
    • 2013
  • The transition of serrated grain boundary and its effect on liquation behavior in the simulated weld heat-affected zone (HAZ) have been investigated in a wrought Ni-based superalloy Alloy 263. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse ${\gamma}^{\prime}$ particles or $M_{23}C_6$ carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. The present study was initiated to determine the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a hot-cracking resistant microstructure. A crystallographic study indicated that the serration led to a change in grain boundary character as special boundary with a lower interfacial energy as those terminated by low-index {111} boundary planes. It was found that the serrated grain boundaries are highly resistant to boron enrichment, and suppress effectively grain coarsening in HAZ. Furthermore, the serrated grain boundaries showed a higher resistance to susceptibility of liquation cracking. These results was discussed in terms of a significant decrease in interfacial energy of grain boundary by the serration.

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF

경사진 <100> 결정립계의 계면분리 거동에 관한 분자동역학 전산모사 (Decohesion of <100> Symmetric Tilt Copper Grain Boundary by Tensile Load Using Molecular Dynamics Simulation)

  • 뉴엔타오;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.38-41
    • /
    • 2009
  • Debonding behavior of symmetric tilt bicrystal interfaces with <100> misorientation axis is investigated through molecular dynamics simulations. FCC single crystal copper is considered in each grain and the model is idealized as a grain boundary under mechanical loading. Embedded-Atom Method potential is chosen to calculate the interatomic forces between atoms. Constrained tensile deformations are applied to a variety of misorientation angles in order to estimate the effect of grain boundary angle on local peak stress. A new parameter of symmetric grain-boundary structure is introduced and refines the correlation between grain boundary angle and local peak stress.

  • PDF

$YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도 (Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors)

  • 윤존도;초우예
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

결정입계 선택적 식각 기법을 적용한 다결정 규소 태양전지의 효율 향상에 관한 연구 (A study on efficiency improvement of poly-Si solar cell using a selective etching along the grain boundaries)

  • 임동건;이수은;박성현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.597-600
    • /
    • 1999
  • A solar cell conversion efficiency was degraded by grain boundary effect in polycrystalline silicon To reduce grain boundary effect, we performed a preferential grain boundary etching, POC$_3$ n-type emitter doping, and then ITO film growth on poly- Si. Among the various preferential etchants, Schimmel etch solution exhibited the best result having grain boundary etch depth higher than 10 ${\mu}{\textrm}{m}$. RF magnetron sputter grown ITO films showed a low resistivity of 10$^{-4}$ $\Omega$ -cm and high transmittance of 85 %. With well fabricated poly-Si solar cells, we were able to achieve as high as 15 % conversion efficiency at the input power of 20 mW/$\textrm{cm}^2$.

  • PDF

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

CONCENTRATION CONTOURS IN LATTICE AND GRAIN BOUNDARY DIFFUSION IN A POLYCRYSTALLINE SOLID

  • Kim, Yongsoo;Wonmok Jae;Saied, Usama-El;Donald R. Olander
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.707-712
    • /
    • 1995
  • Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusion can be estimated and used directly for low burn-up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed-form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission. gas release.

  • PDF

Grain Size Dependence of Ionic Conductivity of Polycrystalline Doped Ceria

  • Hong, Seong-Jae
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.122-127
    • /
    • 1998
  • Conductivities of polycrystalline ceria doped with several rare earth oxides were measured by AC admittance and DC four probe method. The conductions were separated into grain and grain boundary contributions using the complex admittance technique as well as grain size dependence of conductivity. The grain size dependence of polycrystalline conductivity, which can be adequately described by the so-called brick layer model, appears to give a more reliable measure of the grain conductivity compared to the complex admittance method. Polycrystalline resistivity(1/conductivity) increases linearly with the reciprocal of grain size. The intercept of resistivity vs. inverse grain size plot gives a measure of the grain resistivity and the slope gives a measure of the grain boundary resistivity. It was also noted that errors involved in the analysis of experimental data may be different between the complex admittance method and the impedance method. A greater resolution of the spectra was found in the complex admittance method, insofar as the present work is concerned, suggesting that the commonly used equivalent circuit may require re-evaluation.

  • PDF

소성변형의 분자론 (제1보). 이론 (Molecular Theory of Plastic Deformation (I). Theory)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제21권5호
    • /
    • pp.330-338
    • /
    • 1977
  • 고체의 소성변형을 설명하기 위하여 다음과 같은 가정을 하였다. (1) 고체의 소성변형은 크게 두 가지 기구 즉 dislocation 운동과 grain boundary 운동에 의하여 일어난다. (2) Dislocation 운동에 있어서 유동 단위들은 역학적 모형으로 나타내면 다종의 Maxwell 단위들의 평행연결형으로 되고 grain boundary 유동단위들도 다종의 Maxwell 단위들의 평행연결로 표현된다. 이를 물리적으로 설명하면 같은 부류의 유동단위들은 모두 같은 shear plane에서 같은 shear rate로 흐름을 의미한다. (3) Grain boundary 유동단위들과 dislocation 유동단위들 같은 서로 직렬 연결되어 있다. 이는 물리적으로 고체내에서 stress는 균일하게 작용하나 shear rate는 shear plane 의 종류(dislocation 운동면과 grain boundary 운동면)에 따라 달리 나타남을 의미한다. (4) Dislocation 유동단위들과 grain boundary 운동단위들의 운동은 그들의 흐름을 방해하는 장애물 근방의 원자 또는 분자들이 확산해 나가므로써 가능하게 된다. 이러한 가정하에 반응속도론을 적용하여 shear rate와 shear stress를 구하는 일반식을 도출하였다. 본 연구에서는 실제로 중요한 네가지 경우에 대하여 상기 도출한 일반식을 고찰하였다.

  • PDF