• Title/Summary/Keyword: grafting process

Search Result 126, Processing Time 0.034 seconds

Effect of Grafting Cultivation on the Growth of Hot Pepper (고추 접목재배가 생육에 미치는 영향)

  • Kim Eun-Hyun;Kim Hak-Jin;Kwon Byung-Sun;Lim June-Taeg;Hyun Kyu-Hwan;Kim Do-Young;Shin Dong-Young
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • Charactertistics of growth from graft induced three stock of red pepper cultivar were analysed. R-safe rootstock was more higher and vigorous than that of the Yeok kang, Konesian hot cultivar at seedling stage and had good characteristics for grafting in the space of cut surface and the amount of sap released. Numbers of branches were more numerous in the grafted plants than those of non-grafted as grafting affected their growths in the process of branching. There was no distinct difference in plant height among the different rootstock. However the R-safe rootstock showed considerably high growth in the 41st days after grafting. Grafting was effective in the early flowering and the R-safe was the earliest in flowering because of it's good growth under the low temperature.

Development of an Automatic Grafting Robot for Fruit Vegetables using Image Recognition (영상인식 기술 이용 과채류 접목로봇 개발)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.322-327
    • /
    • 2019
  • This study was conducted to improve the performance of automatic grafting robot using image recognition technique. The stem diameters of tomatoes and cucumber at the time of grafting were $2.5{\pm}0.3mm$ and $2.2{\pm}0.2mm$ for scions and $3.1{\pm}0.7mm$ and $3.6{\pm}0.3mm$ for rootstocks, respectively. The grafting failure was occurred when the different height between scions and rootstocks were over 4 mm and below 2 mm due to the small contact area of both cutting surface. Therefore, it was found that the height difference at the cutting surface of 3 mm is appropriate. This study also found that grafting failure was occurred when the stem diameters of both scions and rootstocks were thin. Therefore, it was suggested to use at least one stem with thicker than the average stem diameter. Field survey on the cutting angle of stems by hand were ranged from 13 to 55 degree for scions and 15 to 67 degree for rootstocks, respectively, which indicates that this could cause the grafting failure problem. However, the automatic grafting robot developed in this study rotates the seedlings 90 degree and then the stems are cut using a cutting blade. The control part of robot use all images taken from grafting process to determine the distance between a center of both ends of stem and a gripper center and then control the rotation angle of a gripper. Overall, this study found that The performance of automatic grafting robot using image recognition technique was superior with the grafting success rates of cucumber and tomato as $96{\pm}3.2%$ and $95{\pm}4%$, respectively.

Evaluation of the Effect of Solvent on the Preparation of PVBC-g-ETFE Film by a Pre-irradiation Method (전조사법에 의한 PVBC-g-ETFE 필름 제조 시 용매의 영향 평가)

  • Lee, Sun-Young;Song, Ju-Myung;Sohn, Joon-Yong;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.610-614
    • /
    • 2011
  • In this study, the effect of solvent on the pre-irradiation grafting of VBC(vinylbenzyl chloride) onto a ETFE(polyethylene-co-tetrafluoroethylene) was evaluated. ETFE film was irradiated to generate radical species onto its backbone chain. Each irradiated film was immersed into VBC monomer mixtures diluted with various solvents such as toluene, heptane, and isopropanol etc. for grafting process and then the degree of grafting of each film was measured. FTIR analysis confirmed that the VBC-g-ETFE film was successful prepared. For the films prepared in the various solvents, the mechanical strength and the distribution pattern of the graft polymer over the cross-section of the films were measured and the effect of solvent was evaluated.

Usefulness of Microscopic Procedures in Composite Grafts for Fingertip Injuries

  • Jo, Dong In;Song, Yu Kwan;Kim, Cheol Keun;Kim, Jin Young;Kim, Soon Heum
    • Archives of Reconstructive Microsurgery
    • /
    • v.26 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • Purpose: Fingertip amputations are the most common type of upper limb amputations. Composite grafting is a simple and cost-effective technique. Although many factors have investigated the success of composite grafting, the success rate is not high. Therefore, this study was conducted to investigate whether the microscopic procedure process during composite grafts improves the success rate. Materials and Methods: Thirteen cases of unreplantable fingertip amputation underwent a microscopic resection procedure for composite graft in the operating room. The principle of the procedure was to remove the least devitalized tissue, maximize the clean tissue preservation and exact trimming of the acral vessel and to remove as many foreign bodies as possible. Results: All fingertips in the thirteen patients survived completely without additional procedures. Conclusion: Composite grafting allows for the preservation of length while avoiding the donor site morbidity of locoregional flaps. Most composite grafts are performed as quickly as possible in a gross environment. However, we take noticed the microscopic resection. This process is thought to increase the survival rate for the following reasons. First, the minimal resection will maximize the junction surface area and increase serum imbibition. Second, sophisticated trimming of injured distal vessels will increase the likelihood of inosculation. Third, accurate foreign body removal will reduce the probability of infection and make it possible to increase the concentration and efficiency in a microscopic environment. Although there is a need for more research into the mechanisms, we recommend using a composite graft under the microscopic environment.

A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax (무수말레인산으로 그라프트된 폴리에틸렌 왁스의 중합과 가수분해에 대한 연구)

  • Yu, Si-Won;Choi, Joong-So;Na, Jae-Sik
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.393-400
    • /
    • 2013
  • In this study, Polyethylene wax, which was produced in manufacturing process of high density polyethylene was grafted with maleic anhydride (MAH). The influences of reaction parameters on the graft polymerization as well as the effect of hydrolysis of the anhydride functions were investigated. The results show that the grafting degree increased and conversion of maleic anhydride decreased with an increase in MAH monomer content. This means the highest grafting efficiency for the reaction can be met when MAH monomer content is about 15 wt%. DCP (dicumyl peroxide) and DTBP (di-tert-butyl peroxide) have been used as the initiator and the highest yield of grafting was obtained when the initiator content is about 0.5 wt%. However, It can be seen that the gel content values of this polyethylene wax grafted MAH were below 2%. It was also observed that the grafting degree increased with an increase in reaction temperature and the maximum value was reached 2 hours later. Although MAH functions grafted onto polyethylene wax were mainly in the carboxylic acid forms, some anhydride form of MAH appeared in over 5% of grafting degree. As a result of hydrolysis reaction, it was observed that the conversion of anhydride group into carboxylic acid group was reached up to 10%.

Isothermal Crystallization Kinetics of Quaternary Ammonium Group Grafted Polypropylene (제4암모늄기의 곁가지를 가지는 폴리프로필렌에서 등온결정화속도)

  • Liu, Guangtian
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.268-274
    • /
    • 2015
  • In this paper, the isothermal crystallization kinetics of a functional PP (FPP) with different grafting yields (GY)-methacryloxyethyltrimethyl ammonium chloride (DMC) grafted PP were investigated by differential scanning calorimetry (DSC). The results showed that the crystallization rate of FPP (GY=4.83%) was the highest for all of the studied samples. Furthermore, for the FPP with different GY, the value of $t_{1/2}$ became longer with increasing the grafting yield (GY). The possible explanation was that the quaternary ammonium groups introduced affected the crystallization process of the FPP in two opposite directions, i.e. promoting the nucleation and hindering the transport of the chain molecules towards the growing nuclei. Polarized optical micrographs showed that the DMC chains acted as nucleating agents, which accelerated the nucleation. In addition, the results showed the FPP had lower nucleation free energy than the PP. This study would be useful for designing the processing parameters of the grafted samples.

Characteristics of carbon dioxide separation using amine functionalized carbon (아민기 개질 탄소를 이용한 이산화탄소 분리 특성)

  • Cha, Wang Seog;Lim, Byeong Jun;Kim, Jun Su;Lee, Sung Youn;Park, Tae Jun;Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2021
  • The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

Study of Enhancing Dye Affinity of Fabric using Microwave

  • Kim, Ji-Hyun;Choi, In-Ryu
    • The International Journal of Costume Culture
    • /
    • v.13 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Of all the ways that energy is consumed within textile industry, few are as high energy-expending as dyeing process. The energy consumption in dyeing process amounts to 77% of total fuel consumption, 54% of total electricity use. A technical development in terms of efficient saving energy and time as well is required in the process of dyeing textiles. Recently, dyeing experts are investigating new technologies can conserve energy grafting into microwaves, radio waves, infrared lights, etc. Dyeing industry in Korea, however, the research related to energy conservation has been rarely conducted. Accordingly, this study aims to examine the possibility where especially microwaves could be applied to reduce the energy use and enhance dyeing process skill. This study performs the experiment in which microwave is employed as heating condition in dyeing and figures out as color yield being promoted, bathochromic effect would be achieved. Applying microwaves in dyeing process is expected to lower the carbon emission, energy and time wasted, ultimately exalt economic efficiency.

  • PDF

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Preparation and Characterization of Ion-exchange Membrane Using sPEEK for Fuel Cell Application (Sulfonated-PEEK를 이용한 연료전지용 이온교환막의 제조 및 특성평가)

  • Jang, Won-Gi;Ye, Se-Hui;Kang, Seung-Kyu;Kim, Ji-Tae;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.270-276
    • /
    • 2011
  • A nascent membrane was prepared by using the solution evaporation method with a solution of sPEEK, EdAn (cross-linking reagent), and PEA (grafting reagent) in DMAc. Then, after the imination and sulfonation process the cross-linked and grafted ion-exchange membrane, CG-sPEEK, was obtained. The sulfonation and imination reactions were confirmed by FTIR analysis. In order to evaluate the possibility of prepared membrane for the use of an ion-exchange membrane in PEMFC, proton conductivity, water uptake and volume change were measured and compared with a commercial membrane, Nafion 115. It was revealed that since the proton conductivity (0.17 S/cm) of prepared membrane were much higher than those of Nafion 115 (0.10 S/cm) the prepared membrane could be used for the ion-exchange membrane in PEMFC. However, the high water uptake (130%) of CG-sPEEK should be reduced for the dimension stability.