• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.024 seconds

Design of Optimal Gains on Microprocessor-Based Voltage Source Inverter-Induction Motor System (마이크로프로세서에 의한 전압형 인버터-유도전동기 시스템의 최적이득 설계)

  • 박민호;전태원;민병훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.368-375
    • /
    • 1988
  • This paper is concerned with the design of the optimal gains of the controller in the speed control system for the induction motor controlled by the microprocessor. The system is modelled with the discrete-time state equation, considering the time delay, for the facility of the optimization techniques. Introducing the conjugate gradient descent method, as the optimization technique, are derived the optimal gains, the gains which give the best transient characteristics. At the optimal gains obtained, the theoretcal transient responses are verified by experimental ones on a 5HP induction motor drive system.

  • PDF

Optimizaiton of PSS Parametes and Identification of Optimum Site for PSS Applications (PSS 파라미터 최적화 및 최적위치선정에 관한 연구)

  • 박영문;정정원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.453-459
    • /
    • 1991
  • This paper presents a new algorithm to select optimal parameters and location of power system stabilizer (PSS). A new performance measure, which evaluates the share of a particular mode among state responses, is introduced. The gradient of the performance measure with respect to PSS parametes is derived in an explicit form, so optimal parameters of PSS can be obtained by the steepest descent method. The machine, with which it is most probable to reduce the performance measure, is identified as the optimum site for PSS application.

  • PDF

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

Modified Bayesian personalized ranking for non-binary implicit feedback (비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법)

  • Kim, Dongwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1015-1025
    • /
    • 2017
  • Bayesian personalized ranking (BPR) is a state-of-the-art recommendation system techniques for implicit feedback data. Unfortunately, there might be a loss of information because the BPR model considers only the binary transformation of implicit feedback that is non-binary data in most cases. We propose a modified BPR method using a level of confidence based on the size or strength of implicit feedback to overcome this limitation. The proposed method is useful because it still has a structure of interpretable models for underlying personalized ranking i.e., personal pairwise preferences as in the BPR and that it is capable to reflect a numerical size or the strength of implicit feedback. We propose a computation algorithm based on stochastic gradient descent for the numerical implementation of our proposal. Furthermore, we also show the usefulness of our proposed method compared to ordinary BPR via an analysis of steam video games data.

A New Design of Signal Constellation of the Spiral Quadrature Amplitude Modulation (나선 직교진폭변조 신호성상도의 새로운 설계)

  • Li, Shuang;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.398-404
    • /
    • 2020
  • In this paper, we propose a new design method of signal constellation of the spiral quadrature amplitude modulation (QAM) exploiting a modified gradient descent search algorithm and its binary mapping rule. Unlike the conventional method, the new method, which uses and the constellation optimization algorithm and the maximum number of iterations as a parameter for the iterative design, is more robust to phase noise. And the proposed binary mapping rule significantly reduces the average Hamming distance of the spiral constellation. As a result, the proposed spiral QAM constellation has much improved error performance compared to the conventional ones even in a very severe phase noise environment. It is, therefore, considered that the proposed QAM may be a useful modulation format for coherent optical communication systems and orthogonal frequency division multiplexing (OFDM) systems.

Privacy Preserving Techniques for Deep Learning in Multi-Party System (멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.647-654
    • /
    • 2023
  • Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.

Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider Vth Window in 3D NAND Flash Using a Machine-Learning Method

  • Kihoon Nam;Chanyang Park;Jun-Sik Yoon;Hyeok Yun;Hyundong Jang;Kyeongrae Cho;Ho-Jung Kang;Min-Sang Park;Jaesung Sim;Hyun-Chul Choi;Rock-Hyun Baek
    • Nanomaterials
    • /
    • v.12 no.11
    • /
    • pp.1808-1817
    • /
    • 2022
  • A machine-learning (ML) technique was used to optimize the energetic-trap distributions of nano-scaled charge trap nitride (CTN) in 3D NAND Flash to widen the threshold voltage (Vth) window, which is crucial for NAND operation. The energetic-trap distribution is a critical material property of the CTN that affects the Vth window between the erase and program Vth. An artificial neural network (ANN) was used to model the relationship between the energetic-trap distributions as an input parameter and the Vth window as an output parameter. A well-trained ANN was used with the gradient-descent method to determine the specific inputs that maximize the outputs. The trap densities (NTD and NTA) and their standard deviations (σTD and σTA) were found to most strongly impact the Vth window. As they increased, the Vth window increased because of the availability of a larger number of trap sites. Finally, when the ML-optimized energetic-trap distributions were simulated, the Vth window increased by 49% compared with the experimental value under the same bias condition. Therefore, the developed ML technique can be applied to optimize cell transistor processes by determining the material properties of the CTN in 3D NAND Flash.

Mathematical Model for Acousto-Optical Tomography and Its Numerical Simulation (음향광학 단층촬영(Acousto-Optical Tomography)의 수학적 모델과 수치해석적 시뮬레이션)

  • Nam, Hae-Won;Hur, Jang-Yong;Kim, So-Young;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, Acousto-Optical tomography is modeled by a linear integral equation and an inverse problem involving a diffusion equation in n-spatial dimensions. We make two-step mathematical model. First, we solve a linear integral equation. Assuming the optical energy fluence rate has been recovered from the previous equation, the absorption coefficient ${\mu}$ is then reconstructed by solving an inverse problem. Numerical experiments are presented for the case n=2. The traditional gradient descent method is used for the numerical simulations. The result of the gradient descent method produces the blurring effect. To get rid of the blurring effect, we suggest the total variation regularization for the minimization problem.

Flood Inflow Forecasting on Multipurpose Reservoir by Neural Network (신경망리론에 의한 다목적 저수지의 홍수유입량 예측)

  • Sim, Sun-Bo;Kim, Man-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.45-57
    • /
    • 1998
  • The purpose of this paper is to develop a neural network model in order to forecast flood inflow into the reservoir that has the nature of uncertainty and nonlinearity. The model has the features of multi-layered structure and parallel multi-connections. To develop the model. backpropagation learning algorithm was used with the Momentum and Levenberg-Marquardt techniques. The former technique uses gradient descent method and the later uses gradient descent and Gauss-Newton method respectively to solve the problems of local minima and for the speed of convergency. Used data for learning are continuous fixed real values of input as well as output to emulate the real physical aspects. after learning process. a reservoir inflows forecasting model at flood period was constructed. The data for learning were used to calibrate the developed model and the results were very satisfactory. applicability of the model to the Chungju Mlultipurpose Reservoir proved the availability of the developed model.

  • PDF

A Study on Adversarial Attack Using Triplet loss (Triplet Loss를 이용한 Adversarial Attack 연구)

  • Oh, Taek-Wan;Moon, Bong-Kyo
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.404-407
    • /
    • 2019
  • 최근 많은 영역에 딥러닝이 활용되고 있다. 특히 CNN과 같은 아키텍처는 얼굴인식과 같은 이미지 분류 분야에서 활용된다. 이러한 딥러닝 기술을 완전한 기술로서 활용할 수 있는지에 대한 연구가 이뤄져왔다. 관련 연구로 PGD(Projected Gradient Descent) 공격이 존재한다. 해당 공격을 이용하여 원본 이미지에 노이즈를 더해주게 되면, 수정된 이미지는 전혀 다른 클래스로 분류되게 된다. 본 연구에서 기존의 FGSM(Fast gradient sign method) 공격기법에 Triplet loss를 활용한 Adversarial 공격 모델을 제안 및 구현하였다. 제안된 공격 모델은 간단한 시나리오를 기반으로 검증하였고 해당 결과를 분석하였다.