• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.026 seconds

Development of Railway Vibration Evaluation System Using Actual Railway Vibration Database (실측 철도 진동 데이터베이스를 이용한 철도진동 평가 시스템 개발)

  • Lee, Hyunjun;Seo, Eun Seong;Hwang, Young Sup
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.153-162
    • /
    • 2019
  • Recently, it is necessary to develop a technology for quantitatively evaluating railway vibration to prevent civil complaints about orbital structures caused by railway noise and normal operation of ultra-precise equipment of orbital industrial complexes. The existing analytical method requires a very complicated dynamic response model, and it is difficult to secure the reliability of the result due to the inaccuracy of the demand model. Therefore, in this paper, we propose a railway vibration evaluation algorithm and system that deduce the vibration value generated from railway operation by using Linear Regression and Gradient Descent technique based on actual measurement railway vibration database that classifies factors affecting railway vibration. The prediction results obtained by the proposed algorithm show higher efficiency and accuracy than the existing analytical methods.

Identification of Dynamic Systems Using a Self Recurrent Wavelet Neural Network: Convergence Analysis Via Adaptive Learning Rates (자기 회귀 웨이블릿 신경 회로망을 이용한 다이나믹 시스템의 동정: 적응 학습률 기반 수렴성 분석)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.781-788
    • /
    • 2005
  • This paper proposes an identification method using a self recurrent wavelet neural network (SRWNN) for dynamic systems. The architecture of the proposed SRWNN is a modified model of the wavelet neural network (WNN). But, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. Thus, in the proposed identification architecture, the SRWNN is used for identifying nonlinear dynamic systems. The gradient descent method with adaptive teaming rates (ALRs) is applied to 1.am the parameters of the SRWNN identifier (SRWNNI). The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of an SRWNNI. Finally, through computer simulations, we demonstrate the effectiveness of the proposed SRWNNI.

Ultrasonic NDE Classifications with the Gradient Descent Method and Synthetic Aperture Focusing Technique

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.189-200
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an approach which uses LMS method to determine the coordinates of the ultrasonic probe followed by the use of SAFT to estimate the location of the ultrasonic reflector The method is employed for classifying NDE signals from the steam generator tubes in a nuclear power plant. The classification results using this scheme for the ultrasonic signals from cracks and deposits within steam generator tubes are presented.

A study on the design optimization of baseframe to avoid resonance of diesel generator set (발전기세트 공진 회피를 위한 베이스프레임 최적설계에 관한 연구)

  • Jeong, S.H.;Kwak, Y.S.;Kim, W.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.157-162
    • /
    • 2012
  • A structural modification of baseframe is an effective method to avoid resonance in marine diesel generator (D/G) set which consists of diesel engine, generator and baseframe. However the reinforcement with thick plates or additional parts to increase the natural frequency can be less effective because of increased weight. Especially fine control of target mode based on the experience is difficult because the weight and interference of system have to be considered. In this paper, the design optimization of baseframe was performed to reduce the resonant vibration using a gradient descent method. The design parameters such as thickness, shape and location of baseframe parts are optimized to increase the torsional natural frequency of D/G set. From the actual test, the new designed baseframe reduced the vibration level in resonance by 55% without any increase of weight and interference. interference.

  • PDF

Generalized Predictive Control of Chaotic Systems Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.421-424
    • /
    • 2003
  • This paper proposes the generalized predictive control(GPC) method of chaotic systems using a self-recurrent wavelet neural network(SRWNN). The reposed SRWNN, a modified model of a wavelet neural network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons, mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method, the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.

  • PDF

Target Prioritization for Multi-Function Radar Using Artificial Neural Network Based on Steepest Descent Method (최급 강하법 기반 인공 신경망을 이용한 다기능 레이다 표적 우선순위 할당에 대한 연구)

  • Jeong, Nam-Hoon;Lee, Seong-Hyeon;Kang, Min-Seok;Gu, Chang-Woo;Kim, Cheol-Ho;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.68-76
    • /
    • 2018
  • Target prioritization is necessary for a multifunction radar(MFR) to track an important target and manage the resources of the radar platform efficiently. In this paper, we consider an artificial neural network(ANN) model that calculates the priority of the target. Furthermore, we propose a neural network learning algorithm based on the steepest descent method, which is more suitable for target prioritization by combining the conventional gradient descent method. Several simulation results show that the proposed scheme is much more superior to the traditional neural network model from analyzing the training data accuracy and the output priority relevance of the test scenarios.

Novel steepest descent adaptive filters derived from new performance function (새로운 성능지수 함수에 대한 직강하 적응필터)

  • 전병을;박동조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.823-828
    • /
    • 1992
  • A novel steepest descent adaptive filter algorithm, which uses the instantaneous stochastic gradient for the steepest descent direction, is derived from a newly devised performance index function. The performance function for the new algorithm is improved from that for the LMS in consideration that the stochastic steepest descent method is utilized to minimize the performance index iterativly. Through mathematical analysis and computer simulations, it is verified that there are substantial improvements in convergence and misadjustments even though the computational simplicity and the robustness of the LMS algorithm are hardly sacrificed. On the other hand, the new algorithm can be interpreted as a variable step size adaptive filter, and in this respect a heuristic method is proposed in order to reduce the noise caused by the step size fluctuation.

  • PDF

The Parameter Auto-tuning of the Reference Model Following Fuzzy Logic Controller (기준모델 추종 퍼지 제어기의 파라메터 자동 동조)

  • Roh, Chung-Min;Suh, Seung-Hyun;Ko, Bong-Woon;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1377-1379
    • /
    • 1996
  • In this paper, each parameter was identified by the gradient descent method to overcome difficulty deciding fuzzy rules of FLC for the unknown process and the type of membership Junctions. Usually PID or optimal control theories have been mostly usee in control field so far. However, optimal control requires much time for calculation because of adaptation for disturbance and nonlinearity. And intricate technique such as MRAS which can be realized only by an expert are limited to be used in the systems requiring rapid and precise response because of comparatively longer calculating time and complicateness. Gradient descent method is a method to find Z minimizing a function about a certain vector Z. And required output of FLC is gained using gradient approaching method in order to adapt control rule parameters of FLC. Simulation proved validation of this algorithm.

  • PDF

Human Face Recognition used Improved Back-Propagation (BP) Neural Network

  • Zhang, Ru-Yang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.471-477
    • /
    • 2018
  • As an important key technology using on electronic devices, face recognition has become one of the hottest technology recently. The traditional BP Neural network has a strong ability of self-learning, adaptive and powerful non-linear mapping but it also has disadvantages such as slow convergence speed, easy to be traversed in the training process and easy to fall into local minimum points. So we come up with an algorithm based on BP neural network but also combined with the PCA algorithm and other methods such as the elastic gradient descent method which can improve the original network to try to improve the whole recognition efficiency and has the advantages of both PCA algorithm and BP neural network.

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.