• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.028 seconds

The Design of Predictive Controller for Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블릿 신경 회로망을 이용한 혼돈 비선형 시스템에 대한 예측 제어기 설계)

  • 박상우;최종태;최윤호;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a predictive control method using wavelet neural network for chaotic nonlinear systems is presented. In our method, we use the adjusting method of the parameter for the training a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Duffing and the Henon system, which are a representative continuous and discrete time chaotic nonlinear system respectively.

Image Classification using Deep Learning Algorithm and 2D Lidar Sensor (딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류)

  • Lee, Junho;Chang, Hyuk-Jun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1302-1308
    • /
    • 2019
  • This paper presents an approach for classifying image made by acquired position data from a 2D Lidar sensor with a convolutional neural network (CNN). Lidar sensor has been widely used for unmanned devices owing to advantages in term of data accuracy, robustness against geometry distortion and light variations. A CNN algorithm consists of one or more convolutional and pooling layers and has shown a satisfactory performance for image classification. In this paper, different types of CNN architectures based on training methods, Gradient Descent(GD) and Levenberg-arquardt(LM), are implemented. The LM method has two types based on the frequency of approximating Hessian matrix, one of the factors to update training parameters. Simulation results of the LM algorithms show better classification performance of the image data than that of the GD algorithm. In addition, the LM algorithm with more frequent Hessian matrix approximation shows a smaller error than the other type of LM algorithm.

A Study on the Development and Evaluation of Personalized Book Recommendation Systems in University Libraries Based on Individual Loan Records (대출 기록에 기초한 대학 도서관 도서 개인화 추천시스템 개발 및 평가에 관한 연구)

  • Hong, Yeonkyoung;Jeon, Seoyoung;Choi, Jaeyoung;Yang, Heeyoon;Han, Chaeeun;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users' preferences, this study proposes a method that derive evaluation metrics using individual users' book rental history and tendencies, which can be an effective alternative when users' preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.

A New PAPR Reduction Method in the OFDM System Using GD and Radix-2 Dif IFFT (OFDM 시스템에서의 GD방식과 Radix-2 DIF IFFT를 이용한 효과적인 PAPR 감소 방식)

  • Lee, Sun-Ho;Lee, Hae-Kie;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.70-73
    • /
    • 2007
  • Many methods have been developed to overcome the PAPR(peak-to-average power ratio) problem. Selective mapping(SLM) partial transmit sequence(PTS), subblock phase weighting(SPW) and gradient descent(GD) are used widely to reduce the PAPR. In this paper, we present a effective PAPR reduction method, decrease the calculation through Radix-2 DIF IFFT procedure and GD method. and can transmit selecting data sequence that satisfy threshold value as one part of proposed method, in case satisfy fixed threshold value, or transmit selecting data sequence with the lower papr operating remained part for performance improvement.

  • PDF

Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network (웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계)

  • Seo, Kyoung-Cheol;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF

A Study on High Impedance Fault Detection using Lifting Scheme (Lifting을 이용한 고저항고장 검출에 관한 연구)

  • Hong, D.S.;Yim, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2228-2230
    • /
    • 2002
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the Lifting and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of lifting scheme to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

On-line Estimation of DNB Protection Limit via a Fuzzy Neural Network

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.222-234
    • /
    • 1998
  • The Westinghouse OT$\Delta$T DNB protection logic heavily restricts the operation region by applying the same logic for a full range of operating pressure in order to maintain its simplicity. In this work, a fuzzy neural network method is used to estimate the DNB protection limit using the measured average temperature and pressure of a reactor core. Fuzzy system parameters are optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the proposed method has 5.99 percent larger thermal margin than the conventional OT$\Delta$T trip logic. This simple algorithm provides a good information for the nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.

  • PDF

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.