• Title/Summary/Keyword: gradient flow

Search Result 1,171, Processing Time 0.03 seconds

An Effects of $CO_2$ Addition on Flame Structure in a Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 $CO_2$ 첨가가 화염 구조에 미치는 영향 연구)

  • Lee, Kee-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • A numerical study was conducted to have the effect of $CO_2$ addition to fuel on the chemical reaction mechanism with the change of the initial concentration of $CO_2$ and the axial velocity gradient. From this study, it was found that there were two serious effects of $CO_2$ addition on a non-premixed flame ; a diluent effect by the reactive species reduction and chemical effect of the breakdown of $CO_2$ by the third-body collision and thermal dissociation. Especially, the chemical effect was serious at the lower velocity gradient of the axial flow. It was certain that the mole fraction profile of $CO_2$ was deflected and CO was increased with the initial concentration of $CO_2$. It was also ascertained that the breakdown of $CO_2$ would cause the increasing of CO mole fraction at the reaction region. It was also found that the addition of $CO_2$ did not alter the basic skeleton of $H_2-O_2$ reaction mechanism, but contributed to the formation and destruction of hydrocarbon products such as HCO. The conversion of CO was also suppressed and $CO_2$ played a role of a dilution in the reaction zone at the higher axial velocity gradient.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(4) - Velocity Profile(2) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(4) - 유속분포(2))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.242-254
    • /
    • 2016
  • This paper is the forth investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Also particle image velocimetry (PIV) measurement at this position showed that the real velocity profile was far from the assumption of ISM evaluation. In this paper, the planar velocity profiles were measure from 1.75B to 6.00B position by PIV and the characteristics were examined according to the valve angles and lifts for further investigations about the effect of the position on the velocity profile. The results show that $26^{\circ}$ valve angle is always an unique exceptional case in all aspects. If the valve angle is $21^{\circ}$ and below, the planar velocity profiles according to the lift and the position are similar to each other, however, the tangential velocity curves along with the radial direction have common tendencies up to $16^{\circ}$ angle. Also the well arranged swirl behaviors are generally observed at the position above 3.00B and the velocity contour lines come closer to the concentric circle as the valve lift increases. In addition, the gradient of tangential velocity along with the radial direction from the swirl center becomes stable and constant as the position goes downstream. Concurrently the velocity gradient is larger to the eccentric direction of the center. In the meantime the tangential velocity curves along with the radial direction are irregular and various at 1.75B, however, they become regular and reach higher level as the evaluation position goes downstream. At this time the curves of 4.50B are the best fitted to the ideal one. On the other hand in an exceptional case, $26^{\circ}$, the velocity contours are very complicated over 6mm valve lift regardless the position and the gradient increases to the opposite direction of the eccentric center. Also, 6.00B is a best fitting position in the geometrical cylinder center base. With respect to the swirl center, the distribution range of centers for 1.75B is different to that for the other positions and the eccentricities of this plane are larger regardless the valve angle. After 1.75B, there is no certain tendency in the center position change according to the valve angle and lift. Additionally, the eccentricities are not sufficiently small to neglecting the effect on ISM measurement.

Axial Wall Slits Effect on the Helical Flow in the Gap between two Concentric Cylinders

  • Liu, Dong;Yang, Xiao-Yong;Ding, Jian;Kim, Hyoung-Bum
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.60-64
    • /
    • 2012
  • The helical flow regime was investigated by using DPIV when the rotating Reynolds number is small. The wall slits were azimuthally located along the inner wall of outer cylinder and the slits number of each model was 9 and 18, another plain wall model was also studied for comparison purpose. The helical vortex flow regime can be observed in all the three models. The negative temperature gradients determine the direction of the rotation and movement of the helical vortex. But the helical wavy vortex flow can only be found in the plane and 9-slit models. And the result showed that the existence of slit wall accelerated the transition process.

Experimental study of turbulent flow in a U-bend of circular cross-section (원형단면의 곡관에서의 난류유동 측정)

  • Lee, Geon-Hwi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.956-965
    • /
    • 1998
  • Hot-wire measurement of the longitudinal and radial velocity components and Reynolds stresses are reported for developing turbulent flow in a strongly curved 180 deg. pipe and its tangents. Slanted wire is rotated to 6 directions and the voltage outputs of them are combined to obtain the mean velocities and Reynolds stresses. Significant double maxima in the longitudinal velocity component appear in the bend. V-profiles reveal the development of a strong secondary flow. This secondary flow is induced by the transverse pressure gradient set up between the outer(r$\sub$o/) and inner(r$\sub$i/) wall region of the bend. Another second cross-stream flow develops after .theta.=135 deg. and its direction is opposed to that of main second flow.

An Experimental Study on Inner Flow between Shrouded Corotating Disks (밀폐된 동시회전원판 내부유동에 관한 실험적 연구)

  • Yu, Seung-Chul;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.637-643
    • /
    • 2000
  • The shrouded corotating disk flow has a simple figure on geometric basis, but has various and complicated forms of flow. this complicated flows can be variously applied to not only information storage device, but also turbomachinery which is greatly influenced by centrifugal force. This study measured its velocity to measure inner flow field with unique flow field univluenced, using LDV and subminiature hot-wire. The result of experiment shows that distribution limits of solid body rotation region, dimensionless velocity gradient and distribution limits of disk surface boundary layer(Ekman layer) are changed by the gap of disks and rotating speed. Circulating vortex which is near the shroud is effected by the gap of disks and rotating speed.

  • PDF

Flow Through Rubble Mound Dike (사석제를 투과하는 흐름)

  • 김채수;남선우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.109-116
    • /
    • 1988
  • This study was aimed at determining a regime of flow through rubble mound dike consisted of all sized quarrystons, and deriving a relationship between hydraulic gradient (I) and mean flow velocity (V) through the dike. The analysis was carried out with the data observed after final gap closing of the Haenam Sea dike from May, 6 to May, 14, 1987. The resu]ts are summarized as follows: 1. The regime of flow would be defined as the turbulent flow. 2. As to the relationships, two kinds of formula that are exponential and binomial were obtained. Exponential formula: I=2.099V 1.2888 Binomial formula: I=0.6113V+5.5235V$^2$ 3. Correlation coefficient of the former was 0.824 and that of the latter was 0.821, and the deviations between observed data and estimated were 0.0070 and 0.0064 respectively. 4. Comparing the correlation coefficient, both the equations have the same correlation coefficients, but in case of the deviation the binomial equation was better than the exponential equation. Therefore, the binomial equation is proposed for analyzing the flow through rubble mound dike.

  • PDF

Influence of Dopamine on Intrarenal Blood Flow in Dog (개의 신내 혈류에 미치는 Dopamine의 영향)

  • 고석태;강호연
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.149-160
    • /
    • 1984
  • In order to certify the diuretic mechanism of dopamine, this study was performed in dog. The following results were obtained. Dopamine, when given intravenously, produced diuresis, and increased glomerular filtration rate (GFR), renal plasma flow (RPF), and amount of sodium excreted in urine. When infused directly into a renal artery, dopamine elicited a marked diuresis confined only to the infused side, with concomitant rises in osmolar clearance and sodium excretion as well as a slight increase in free water clearance. Simultaneously total renal plasma flow and medullary plasma flow increased markedly with a increase of glomerular filtration rate and renal plasma flow. Medullary concentration gradient of sodium also markedly lowered in the infused kidney. These changes were not observed during mannitol diuresis and renal action of dopamine were not apparent in dog pretreated with haloperidol. From the above experimental results, it is thought that dopamine, when given into a vien or infused directly into a renal artery, induces diuresis, and the mechanism of its action is due to dual actions which are hemodynamic effect along with glomerular filtraction rate, and the increased response in the medullary blood flow.

  • PDF

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

Effects of the surface roughness on Flow Characteristics in PDMS Microchannels (PDMS 마이크로채널 유체유동에 미치는 표면거칠기에 관한 연구)

  • Kim, Young-Min;Kim, Woo-Seung;Lee, Sang-Hoon;Baek, Ju-Yeoul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1999-2004
    • /
    • 2004
  • Experiments were conducted to investigate the flow characteristics of water through rectangular PDMS microchannels with a hydraulic diameter ranging from 66.67 to 200 ${\mu}m$. In the experiments, the flow rate and pressure drop across the microchannels were measured at steady states. The experimental results were compared with the predictions from the conventional laminar flow theory. A significant difference between the experimental data and the theoretical predictions was found. Experimental results indicate that the pressure gradient and flow friction in microchannels are higher than those from the conventional laminar flow theory. This may be attributed to the fact that there exists effect of surface roughness of the microchannels. In this study, a surface roughness model is implemented to interpret the experimental data. A good agreement between the experimental data and the numerical predictions with a surface roughness model were found.

  • PDF

The Effect of Buoyancy Orientation on Flow Structures in Turbulent Channel Flow using DNS

  • El-Samni Osama;Yoon HyunSik;Chun Ho Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.