• Title/Summary/Keyword: gradient domain

Search Result 171, Processing Time 0.027 seconds

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

Domain Decomposition Method for Elasto-Plastic Problem (탄소성문제 적용을 위한 영역분할법)

  • Bae, Byung-Kyu;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3384-3390
    • /
    • 2011
  • This paper describes a domain decomposition method of parallel finite element analysis for elasto-plastic structural problems. As a parallel numeral algorithm for the finite element analysis, the authors have utilized the domain decomposition method combined with an iterative solver such as the conjugate gradient method. Here the domain decomposition method algorithm was applied directly to elasto-plastic problem. The present system was successfully applied to three-dimensional elasto-plastic structural problems.

The Mixed Finite Element Analysis for Saturated Porous Media using FETI Method

  • Lee, Kyung-Jae;Tak, Moon-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.693-702
    • /
    • 2010
  • In this paper, FETI(Finite Element Tearing and Interconnecting) method is introduced in order to improve numerical efficiency of Staggered method. The porous media theory, the Staggered method and the FETI method are briefly introduced in this paper. In addition, we account for the MPI(Message Passing Interface) library for parallel analysis, and the proposed combined Staggered method with FETI method. Finally Lagrange multipliers and CG(Conjugate Gradient) algorithm to solve decomposed domain are proposed, and then the proposed method is verified to be numerically efficient by MPI library.

Image Reconstruction Using Poisson Model Screened from Image Gradient (이미지 기울기에서 선별된 포아송 모델을 이용한 이미지 재구성)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • In this study, we suggest a fast image reconstruction scheme using Poisson equation from image gradient domain. In this approach, using the Poisson equation, a guided vector field is created by employing source and target images within a selected region at the first step. Next, the guided vector is used in generating the result image. We analyze the problem of reconstructing a two-dimensional function that approximates a set of desired gradients and a data term. The joined data and gradients are able to work like modifying the image gradients while staying close to the original image. Starting with this formulation, we have a screened Poisson equation known in physics. This equation leads to an efficient solution to the problem in FFT domain. It represents the spatial filters that solve the two-dimensional screened Poisson model and shows gradient scaling to be a well-defined sharpen filter that generalizes Laplace sharpening. We demonstrate the results using a discrete cosine transformation based this Poisson model.

Application of wavelet transform in electromagnetics (Wavelet 변환의 전자기학적 응용)

  • Hyeongdong Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1244-1249
    • /
    • 1995
  • Wavelet transform technique is applied to two important electromagnetic problems:1) to analyze the frequency-domain radar echo from finite-size targets and 2) to the integral solution of two- dimensional electromagnetic scattering problems. Since the frequency- domain radar echo consists of both small-scale natural resonances and large-scale scattering center information, the multiresolution property of the wavelet transform is well suited for analyzing such ulti-scale signals. Wavelet analysis examples of backscattered data from an open- ended waveguide cavity are presented. The different scattering mechanisms are clearly resolved in the wavelet-domain representation. In the wavelet transform domain, the moment method impedance matrix becomes sparse and sparse matrix algorithms can be utilized to solve the resulting matrix equationl. Using the fast wavelet transform in conjunction with the conjugate gradient method, we present the time performance for the solution of a dihedral corner reflector. The total computational time is found to be reduced.

  • PDF

The relation between optical diffraction pattern and domain size in blue phase

  • Lee, Ho-Hyun;Kim, Jong-Hyun;Kikuchi, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.942-944
    • /
    • 2009
  • Blue phase shows several different reflection colors from the randomly oriented domains and crystal direction. Also there are variations in the size of domains. The domain size is dependent on the temperature gradient. With smaller cooling rate of temperature, the domain size was increased compared with rapid cooling. With injection of light of specific wavelength, we find that the diffraction patterns were occurred around the light spot in the cell of blue phase. It was supposed to be from the matching of the phase retardation and domain size. However, actually the diffraction pattern is reflecting the lattice structure in double twist of the blue phase. The lattice constant from the radius of diffraction patterns shows very similar one from the reflection spectrum, which indicates the internal lattice constant in double twist of the blues phase.

  • PDF

A numerical study of turbulent flows with adverse pressure gradient (역압력 구배가 있는 난류유동에 대한 수치적 연구)

  • 김형수;정태선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.668-676
    • /
    • 1991
  • Turbulent flows around tube banks and in the diffuser were studied using a non-orthogonal boundary fitted coordinate system and the modified K-.epsilon. turbulence model. In these cases, many problems emerge which stem from the geometrical complexity of the flow domain and the physical complexity of turbulent flow itself. To treat the complex geometry, governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. The modified K-.epsilon. model of Hanjalic and Launer was applied to solve above two cases under the condition of strong and mild pressure gradient. The results using the modified K-.epsilon. model results in both test cases.

A STUDY ON A MULTI-LEVEL SUBSTRUCTURING METHOD FOR COMPUTATIONS OF FLUID FLOW (유동계산을 위한 다단계 부분 구조법에 대한 연구)

  • Kim J.W.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2005
  • Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].

A Stress-Based Gradient Elasticity in the Smoothed Finite Element Framework (평활화 유한요소법을 도입한 응력기반 구배 탄성론)

  • Changkye Lee;Sundararajan Natarajan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2024
  • This paper presents two-dimensional boundary value problems of the stress-based gradient elasticity within the smoothed finite element method (S-FEM) framework. Gradient elasticity is introduced to address the limitations of classical elasticity, particularly its struggle to capture size-dependent mechanical behavior at the micro/nano scale. The Ru-Aifantis theorem is employed to overcome the challenges of high-order differential equations in gradient elasticity. This theorem effectively splits the original equation into two solvable second-order differential equations, enabling its incorporation into the S-FEM framework. The present method utilizes a staggered scheme to solve the boundary value problems. This approach efficiently separates the calculation of the local displacement field (obtained over each smoothing domain) from the non-local stress field (computed element-wise). A series of numerical tests are conducted to investigate the influence of the internal length scale, a key parameter in gradient elasticity. The results demonstrate the effectiveness of the proposed approach in smoothing stress concentrations typically observed at crack tips and dislocation lines.

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.