• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.029 seconds

A Robust Correlation-based Video Tracking (강인한 상관방식 추적기를 이용한 움직이는 물체 추적)

  • Park Dong-Jo;Cho Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.587-594
    • /
    • 2005
  • In this paper, a robust correlation-based video tracking is proposed to track a moving object in correlated image sequences. A correlation-based video tracking algorithm seeks to align the incoming target image with the reference target block image, but has critical problems, so called a false-peak problem and a drift phenomenon (correlator walk-off. The false-peak problem is generally caused by highly correlated background pixels with similar intensity of a moving target and the drift phenomenon occurs when tracking errors accumulate from frame to frame because of the nature of the correlation process. At first, the false-peaks problem for the ordinary correlation-based video tracking is investigated using a simple mathematical analysis. And, we will suggest a robust selective-attention correlation measure with a gradient preprocessor combined by a drift removal compensator to overcome the walk-off problem. The drift compensator adaptively controls the template block size according to the target size of interest. The robustness of the proposed method for practical application is demonstrated by simulating two real-image sequences.

On learning of HMM-Net classifiers (HMM-Net 분류기의 학습)

  • 김상운;오수환
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.61-67
    • /
    • 1997
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.

  • PDF

Prediction System of Facebook's popular post using Opinion Mining and Machine Learning (오피니언 마이닝과 머신러닝을 이용한 페이스북 인기 게시물 예측 시스템)

  • An, Hyeon-woo;Moon, Nammee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.70-73
    • /
    • 2017
  • 페이스북 SNS 플랫폼에서 제공하는 데이터 수집 프로토콜을 이용해 콘텐츠들의 인기 점수와 사용자 의견들을 수집하고 수집된 정보를 가공하여 기계학습을 진행한다. 오피니언 데이터를 학습함으로 인해 인간의 관점을 모방하게 되며 결과적으로 콘텐츠의 질을 판단하는 요소로써 작용하도록 한다. 데이터의 수집은 페이스북 측에서 제공하는 Graph API 와 Python 을 이용하여 진행한다. Graph API 는 HTTP GET 방식의 프로토콜을 이용하여 요청 하고 JSON 형식으로 결과를 반환한다. 학습은 Multiple Linear Regression 과 Gradient Descent Algorithm(GDA)을 사용하여 진행한다. 이후 학습이 진행된 프로그램에 사용자 의견 데이터를 건네주면 최종인기 점수를 예측하는 시스템을 설명한다.

  • PDF

PARALLEL PERFORMANCE OF THE Gℓ-PCG METHOD FOR IMAGE DEBLURRING PROBLEMS

  • YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.317-330
    • /
    • 2018
  • We first provide how to apply the global preconditioned conjugate gradient ($G{\ell}-PCG$) method with Kronecker product preconditioners to image deblurring problems with nearly separable point spread functions. We next provide a coarse-grained parallel image deblurring algorithm using the $G{\ell}-PCG$. Lastly, we provide numerical experiments for image deblurring problems to evaluate the effectiveness of the $G{\ell}-PCG$ with Kronecker product preconditioner by comparing its performance with those of the $G{\ell}-CG$, CGLS and preconditioned CGLS (PCGLS) methods.

On the Use of Momentum Interpolation Method for flows Involving A Large Body force (바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

Speaker Adaptation Algorithm Based on a Maximization of the Observation Probability (관찰 확률 최대화에 의한 화자 적응 알고리즘)

  • 양태영;신원호;전원석;김지성;김지성;김원구;이충용;윤대희;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.37-42
    • /
    • 1998
  • 본 논문에서는 SCHMM에 적용된 관찰 확률 최대화에 의한 화자 적응 알고리즘을 제안한다. 제안된 알고리즘은 SCHMM의 관찰 확률 밀도들이 새로운 화자의 음성 특징을 잘 표현하지 못하는 경우 인식 성능이 저하되는 것을 막기 위하여, 적응 데이터의 각 특징 벡터들이 최대의 관찰 확률을 가질 수 있도록 관찰 확률 밀도를 결정하는 평균 벡터 μ와 분산 행렬 Σ를 기울기 탐색(gradient search) 알고리즘에 의해 반복적으로 적응시켜 주는 방법이다. SCHMM의 상태 천이 확률 A와 혼합 밀도 계수 C는 관찰 확률 밀도 적응 과정 을 거친 후, 적응 데이터로부터 구한 확률과 기존 확률의 가중 평균을 취하는 과정을 반복 하여 적응시켜 주었다. 제안된 화자 적응 알고리즘을 사용하여 단독음 인식 실험을 수행한 결과, 화자 적응을 수행하지 않았을 때와 비교하여 화자 독립 시스템에서는 평균 9.8%, 남 성 화자 종속 시스템에서는 평균 46.0%, 여성 화자 종속 시스템에서는 평균 52.7%의 인식 률 향상을 보였다.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

Optimal Stator Slot Design of Inverter-Fed Induction Motor for Reduction of Core and Winding Losses (손실 저감을 위한 인버터 구동 유도 전동기의 고정자 슬롯 형상 최적화)

  • Kim, Jae-Woo;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.86-88
    • /
    • 2004
  • In this paper, optimal stator slot shape of 3-phase inverter-fed induction motor is designed to reduce stator core and winding losses. For the analysis, the F.E.M on 1 phase band periodic condition in stator is coupled with harmonic equivalent circuit. For the optimal design, the conjugate gradient method is used as an optimizing algorithm. The stator core and winding losses are reduced by the design method. The results are verified by those of the time-step finite element analysis.

  • PDF

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF