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PARALLEL PERFORMANCE OF THE G`-PCG METHOD FOR

IMAGE DEBLURRING PROBLEMS†

JAE HEON YUN

Abstract. We first provide how to apply the global preconditioned conju-

gate gradient (G`-PCG) method with Kronecker product preconditioners

to image deblurring problems with nearly separable point spread functions.
We next provide a coarse-grained parallel image deblurring algorithm using

the G`-PCG. Lastly, we provide numerical experiments for image deblur-

ring problems to evaluate the effectiveness of the G`-PCG with Kronecker
product preconditioner by comparing its performance with those of the

G`-CG, CGLS and preconditioned CGLS (PCGLS) methods.
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1. Introduction

Image deblurring is the process of restoring or estimating the true image from
the observed blurred and noisy image. The blurred image is arising from the
physical process of image devices that can be expressed by a linear mathemat-
ical model. The problem of image deblurring usually reduces to the following
Tikhonov regularization problem

min
x∈RN

{
‖Ax− b‖22 + λ2‖Dx‖22

}
, (1)

where λ > 0 is a regularization parameter, A ∈ RN×N is a blurring matrix
which is very ill-conditioned, D ∈ RN×N is an identity matrix or a discrete
approximation of the first or second order partial derivative operators (see [2, 4,
5]), the first term ‖Ax−b‖22 is called the data-fitting term, the second term ‖Dx‖22
is a regularization (or penalty) term, x ∈ RN and b ∈ RN represent the original
and observed images respectively. In this paper, we are interested in solving the
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Tikhonov regularization problem in which D is a discrete approximation of the
first or second order partial derivative operators,

In 2006, Salkuyeh [13] proposed the global conjugate gradient (G`-CG) method
based on matrix Krylov subspace for solving a linear system with multiple right
hand sides of the form AX = B, where A is a symmetric positive definite ma-
trix. The G`-CG method has a rich parallelism, so that it is very suitable for
advanced parallel supercomputers. For this reason, the purpose of this paper is
to study applications of the global preconditioned conjugate gradient (G`-PCG)
method to the Tikhonov regularization problem (1).

This paper is organized as follows. In Section 2, we introduce some defini-
tions and properties which are used in this paper. In Section 3, we introduce two
linear operator equations and Kronecker product preconditioners corresponding
to two choices of regularization matrices D in the Tikhonov regularization prob-
lem (1) when A and D can be represented or well approximated by Kronecker
products [8, 9]. In Section 4, we provide how to apply the G`-PCG method with
Kronecker product preconditioners to the linear operator equations. In Section
5, we propose a coarse-grained parallel image deblurring algorithm using the
G`-PCG that is suitable for personal computers with multiple cores which need
a lot of communication time among the cores and overhead (or startup) time.
In Section 6, the effectiveness of the G`-PCG with Kronecker product precondi-
tioners is evaluated by comparing numerical results of the G`-PCG method with
those of the G`-CG, CGLS and preconditioned CGLS (PCGLS) methods [1, 10]
for image deblurring problems. Lastly, some conclusions are drawn.

2. Preliminaries

We first introduce the vec operator which transforms a matrix C ∈ Rm×n

into a column vector c ∈ RN by stacking the columns of C, i.e.

c = vec(C) = (cT1 , c
T
2 , . . . , c

T
n )T

where N = mn and ci denotes the ith column of C. Let X ∈ Rm×n represent the
original or true image, and let B ∈ Rm×n denote the the observed blurred and
noisy image. Then there exists a large sparse matrix A such that Ax = b, where
x = vec(X), b = vec(B), and the matrix A represents the blurring operator
which transforms the original image into the blurred image. Notice that the
blurring matrix A is determined by the point spread function (PSF) and the
boundary condition (BC) imposed outside of the image. In this paper, we only
consider the cases for zero and reflexive boundary conditions [5].

The Tikhonov regularization problem (1) is mathematically equivalent to solv-
ing the following equation:(

ATA+ λ2DTD
)
x = AT b. (2)

If the size of the original image X is m×n, then the size of blurring matrix A is
mn×mn, which is very large and sparse when m and n are large. So, the linear
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system (2) is usually solved using iterative methods such as CGLS, LSQR, and
so on [1, 3, 10, 11].

If the PSF is separable (i.e., the PSF can be expressed as an outer product
of two vectors), then A can be represented by the Kronecker product of Ar and
Ac, i.e. A = Ar ⊗ Ac, where Ar ∈ Rn×n and Ac ∈ Rm×m. Here, the matrix A
satisfying A = Ar ⊗ Ac is also called separable. If A and D are separable, then
the large sparse linear system (2) can be transformed into small size of matrix
equations. For this reason, we want to study how to solve the small size of
matrix equations using the G`-PCG method instead of solving the large sparse
linear system (2). Constructing such matrix equations will be discussed in the
next section.

For matrices X and Y ∈ Rm×n, the Frobenius inner product of X and Y
is defined by 〈X, Y 〉F = tr(XTY ), where tr(XTY ) denotes the trace of XTY
which is the sum of its main diagonal entries. Let H be a Hilbert space. A
bounded linear operator T : H → H is called self-adjoint if T ∗ = T , where T ∗
is the adjoint operator of T [7]. A self-adjoint operator T : Rm×n → Rm×n is
positive definite if

〈X, T (X)〉F > 0 for all X 6= O in Rm×n.

A self-adjoint operator T : Rm×n → Rm×n is said to be positive definite on a
subset S of Rm×n if 〈X, T (X)〉F > 0 for all X 6= O in S.

3. Construction of linear operator equations

We first show how to construct linear operator equations corresponding to the
Tikhonov regularization problems (1), where D is a discrete approximation of
the first or second order partial derivative operators, and then we propose Kro-
necker product preconditioners which are required for the global preconditioned
conjugate gradient (G`-PCG) method. We assume that the blurring matrix A
is nearly separable, that is, A can be represented or well approximated by Kro-
necker product of Ar and Ac. More specifically, A = Ar ⊗ Ac or A ≈ Ar ⊗ Ac,
where Ar ∈ Rn×n and Ac ∈ Rm×m. In this section, we only consider the case of
A = Ar ⊗Ac since the other case of A ≈ Ar ⊗Ac can be explained similarly.

3.1. Operator equation for D corresponding to the Laplacian (Case
1). We consider the Tikhonov regularization problem (1) for the case where D
is an approximate matrix corresponding to the Laplacian xss + xtt of the image
X ∈ Rm×n, where s and t denote the variable in the vertical direction and the
horizontal direction, respectively. Then the matrix D can be expressed as

Dx = −(xss + xtt) = In ⊗D2,m x+D2,n ⊗ Im x,

where x = vec(X), In and Im are the identity matrix of order n and m re-
spectively, and D2,m and D2,n are m×m and n× n matrices obtained by finite
difference approximations to the second order partial derivatives xss and xtt [5].
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More specifically, when m = 4, the matrix D2,m for zero boundary condition is
given by

D2,m =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

,
and the matrix D2,m for reflexive boundary condition is given by

D2,m =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

.
Since A = Ar ⊗Ac and D = In ⊗D2,m +D2,n ⊗ Im, the linear system (2) can

be transformed into{
AT

r Ar ⊗AT
c Ac + λ2(In ⊗DT

2,mD2,m +D2,n ⊗DT
2,m

+DT
2,n ⊗D2,m +DT

2,nD2,n ⊗ Im)
}
x = (Ar ⊗Ac)

T b.
(3)

Let X ∈ Rm×n and B ∈ Rm×n be such that x = vec(X) and b = vec(B), and
let a linear operator A1 : Rm×n → Rm×n be defined by

A1(X) = AT
c AcXA

T
r Ar+λ2(DT

2,mD2,mX+DT
2,mXD

T
2,n+D2,mXD2,n+XDT

2,nD2,n).

Then (3) can be expressed as the following operator equation

A1(X) = AT
c BAr. (4)

It can be shown that the linear operator A1 : Rm×n → Rm×n is self-adjoint and
positive definite on a subset of Rm×n, i.e., 〈X,A1(X)〉F > 0 for all X ∈ Rm×n

which is not a constant image, which is true for most of practical images X.
In order to accelerate the convergence of the G`-CG, a good choice of precon-

ditioner corresponding to the operator equation (4) is required. From the left
side of the linear system (3), one can obtain the following approximate relation{

AT
r Ar ⊗AT

c Ac + λ2(In ⊗DT
2,mD2,m +D2,n ⊗DT

2,m

+DT
2,n ⊗D2,m +DT

2,nD2,n ⊗ Im)
}
x

≈
{(
AT

r Ar + λ(In +D2,n)T (In +D2,n)
)

(5)

⊗
(
AT

c Ac + λ(Im +D2,m)T (Im +D2,m)
)}
x.

From (5), we can choose a Kronecker product preconditioner of the form M1 =
Mr ⊗Mc, where

Mr = AT
r Ar + λ(In +D2,n)T (In +D2,n),

Mc = AT
c Ac + λ(Im +D2,m)T (Im +D2,m).
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Then it is clear that Mr ∈ Rn×n and Mc ∈ Rm×m. Now we define a precondi-
tioner operator M1 : Rm×n → Rm×n by

M1(X) = McXM
T
r . (6)

It can be easily shown that the preconditioner operator M1 is self-adjoint and
positive definite.

3.2. Operator equation for D corresponding to ‖xs‖22 + ‖xt‖22 (Case 2).
We consider the Tikhonov regularization problem (1) for the case where D is an
approximate matrix corresponding to ‖xs‖22 + ‖xt‖22, where s and t denote the
variables in the vertical direction and the horizontal direction, respectively.

Let D1,m and D1,n be m×m and n×n matrices obtained by finite difference
approximations to the first order partial derivatives xs and xt [5]. That is, when
m = 4, the matrix D1,m for zero boundary condition is given by

D1,m =


−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1

,
and the matrix D1,m for reflexive boundary condition is given by

D1,m =


−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 0

.
Consider the matrix D in the Tikhonov regularization problem (1) such that
‖Dx‖22 = ‖xs‖22 + ‖xt‖22. Then we can easily obtain

‖Dx‖22 =

∥∥∥∥(xsxt
)∥∥∥∥2

2

=

∥∥∥∥((In ⊗D1,m)x

(D1,n ⊗ Im)x

)∥∥∥∥2
2

= ‖Ds x‖22 + ‖Dt x‖22,

where Ds = In ⊗D1,m and Dt = D1,n ⊗ Im. Thus, (1) can be transformed into
the following form

min
x∈RN


∥∥∥∥∥∥
 A

λDs

λDt

x−

b0
0

∥∥∥∥∥∥
2

2

 . (7)

It is easy to show that the minimization problem (7) is equivalent to solving
the following equation(

ATA+ λ2DT
s Ds + λ2DT

t Dt

)
x = AT b. (8)

Since A = Ar ⊗Ac, Ds = In ⊗D1,m and Dt = D1,n ⊗ Im, the linear system (8)
can be rewritten as{

ATr Ar ⊗ATc Ac + λ2(In ⊗DT
1,mD1,m) + λ2(DT

1,nD1,n ⊗ Im)
}
x = (ATr ⊗ATc )b. (9)
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Let X ∈ Rm×n and B ∈ Rm×n be such that x = vec(X) and b = vec(B), and
let a linear operator A2 : Rm×n → Rm×n be defined by

A2(X) = (AT
c Ac)X(AT

r Ar) + λ2
(
(DT

1,mD1,m)X +X(DT
1,nD1,n)

)
.

Then (9) can be expressed as the following operator equation

A2(X) = AT
c BAr. (10)

It can be shown that the linear operator A2 : Rm×n → Rm×n is self-adjoint and
positive definite on a subset of Rm×n, i.e., 〈X,A2(X)〉F > 0 for all X ∈ Rm×n

when at least one column of X ∈ Rm×n is not a constant vector. Notice that
most cases of practical images X satisfy that at least one column of X ∈ Rm×n

is not a constant vector.
From the left side of the linear system (9), one can obtain the following

approximate relation(
AT

r Ar ⊗AT
c Ac + λ2(I ⊗DT

1,mD1,m) + λ2(DT
1,nD1,n ⊗ I)

)
x

≈
(
AT

r Ar + λ(I +DT
1,nD1,n)

)
⊗
(
AT

c Ac + λ(DT
1,mD1,m + I)

)
x. (11)

From (11), we can choose a Kronecker product preconditioner of the form M2 =
Mr ⊗Mc, where

Mr = AT
r Ar + λ(I +DT

1,nD1,n) and Mc = AT
c Ac + λ(I +DT

1,mD1,m).

Now we define a preconditioner operator M2 : Rm×n → Rm×n by

M2(X) = McXM
T
r . (12)

It can be easily shown that the preconditioner operator M2 is self-adjoint and
positive definite.

4. G`-PCG algorithm for solving the linear operator equation

By combining the ideas of the G`-CG method [13] and the PCG method [6,
12], the following G`-PCG algorithm for solving the linear operator equation
Ai(X) = B with the preconditioner operator Mi (1 ≤ i ≤ 2) can be easily
obtained, where Ai and Mi are the linear operators defined in Section 3 and
B = AT

c BAr.
Algorithm 1 : G`-PCG for solving linear operator equations Ai(X) = B
1. Compute R0 := B −Ai(X0), Z0 =M−1

i (R0), P0 = Z0

2. For j = 0, 1, · · · , until convergence Do :

αj := 〈Rj , Zj〉F / 〈Ai(Pj), Pj〉F
Xj+1 := Xj + αjPj
Rj+1 := Rj − αjAi(Pj)
Zj+1 :=M−1

i (Rj+1)

βj := 〈Rj+1, Zj+1〉F / 〈Rj , Zj〉F
Pj+1 := Zj+1 + βjPj

3. End

Notice that Ai and Mi in Algorithm 1 are self-adjoint and positive definite
operators. Moreover, if Mi in Algorithm 1 is chosen as an identity operator,
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then Algorithm 1 reduces to the G`-CG algorithm for solving the linear operator
equation Ai(X) = B.

5. Parallel image deblurring using the G`-PCG method

In this section, we propose a parallel image deblurring algorithm using the
G`-PCG method with Kronecker product preconditioners when the pixel size of
the blurred and noisy image B is large. Assume that the PSF (point spread
function) P is spatially invariant and separable. Let ` denote the number of
processors (or cores) to be used. For simplicity of exposition, suppose that n is
divisible by `. Then the blurred and noisy image B ∈ Rm×n and the true image
X ∈ Rm×n are partitioned into ` equal column blocks of the form

B =
(
B1 B2 · · · B`

)
, X =

(
X1 X2 · · · X`

)
,

where Bi and Xi are arrays of the equal size m× n
` which is required for load-

balancing of parallel computing. Then, each processor k needs to execute the
following operations:

Construct the small size of blurring matrices Ark and Ack corresponding to Bk

from the PSF array P
Construct the regularization matrix D(k) corresponding to Bk

Construct Kronecker preconditioner Mrk and Mck from Ark , Ack and D(k)

Compute Xk by applying the G`-PCG to the linear operator equation
generated from Ark , Ack and D(k).

Finally, the true image X can be formed by collecting Xk from each processor
k. The parallel algorithm corresponding to the above operations can be written
using the Matlab parfor statement as follows:

Algorithm 2 : Parallel algorithm using G`-PCG method
parfor k = 1 to `

Construct Ark and Ack corresponding to Bk from the PSF array P

Construct D(k) corresponding to Bk
Construct Mrk and Mck from Ark , Ack and D(k)

Apply the G`-PCG to the linear operator equation generated from

Ark , Ack and D(k) to compute Xk
end

Since the true image X is formed by collecting Xk from each processor k, the
reflexive boundary condition should be used to improve the continuity of the
image X at the boundary of Xk. If Mrk and Mck in Algorithm 2 are chosen as
identity matrices, then Algorithm 2 reduces to Parallel algorithm using G`-CG
method.

Since the G`-PCG has a rich parallelism, we can easily parallelize the G`-
PCG algorithm itself, which is called a fine-grained parallel algorithm that is
suitable for advanced parallel supercomputers. The algorithm provided in this
section is a coarse-grained parallel algorithm suitable for personal computers
with multiple cores which need a lot of communication time among the cores
and overhead time.
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6. Numerical experiments

In this section, we provide numerical experiments for several image deblur-
ring problems to estimate the efficiency of the G`-PCG method with Kronecker
product preconditioners for solving the linear operator equation Ai(X) = B with
the preconditioner operator Mi (1 ≤ i ≤ 2), where Ai and Mi are linear op-
erators discussed in Section 3. We evaluate the effectiveness of the G`-PCG by
comparing its performance with those of the G`-CG, CGLS and PCGLS meth-
ods (see Tables 1 to 4). We also provide parallel performance results for parallel
algorithm proposed in Section 5 to evaluate its efficiency on a personal computer
with 4 cores (see Tables 5 and 6).

All numerical tests have been performed using Matlab R2016b on a personal
computer, which has 4 cores, equipped with Intel Core i5-4570 3.2GHz CPU and
8GB RAM. For numerical experiments, we have used 3 types of PSFs (point
spread functions) which are Gaussian blur, Motion blur and Disk blur of size
7 × 7. The PSF array P for Gaussian blur of size 7 × 7 is generated by the
Matlab function fspecial(′gaussian′, [7, 7], 2). The PSF array P for Disk blur
of size 7 × 7 is generated by the Matlab function fspecial(′disk′, 3), and the
PSF array P for Motion blur of size 7× 7 is generated by the Matlab function

P = zeros(7); P (3 : 5, :) = fspecial(′motion′, 7, 1).

Notice that Gaussian blur are separable, but Disk blur and Motion blur are
nonseparable. For a nonseparable PSF, we have used a separable PSF which is a
rank-1 approximation to the nonseparable PSF using Kronecker product approx-
imation techniques proposed in [8, 9]. So A can be expressed or approximated
as Ar ⊗Ac for all PSFs.

The blurred and noisy image B is generated by

vec(B) = A · vec(X) + vec(E),

where A stands for the blurring matrix which can be generated by the original
PSF array P according to the boundary condition to be used, and the noise E
is a Gaussian white noise with mean 0 and standard deviation 0.75 which can
be generated using Matlab function randn. That is,

E = 0.75× randn(m,n)

where (m,n) denotes the size of the true image X.
The initial image X0 is set to the blurred and noisy image B. The stopping

criterion for iterative methods at the k-th iterate is

‖Rk‖F
‖R0‖F

≤ 10−2

where Rk represents the k-th residual matrix corresponding to the k-th iteration
matrix Xk of iterative methods with R0 the initial residual matrix corresponding
to X0. A restored image G is measured by the PSNR (Peak Signal to Noise
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Ratio) which is defined by

PSNR = 10 log10

max
i,j
|xij |2 ·m · n

‖X −G‖2F


where X = (xij) represents the true image.

We have used 2 test images Lena and Joomaks for numerical experiments.
The pixel size of Lena image is 512× 512, and the pixel size of Joomaks image
is 2200×2200. We have used two boundary conditions which are zero boundary
condition and reflexive boundary condition. The preconditioners for the PCGLS
method were chosen as follows: For the zero boundary condition we chose the
BCCB (Block circulant with circulant blocks) approximation matrix which can
be easily obtained using the DFT2 (2-dimensional discrete Fourier transform),
and for the reflexive boundary condition we chose the symmetric approximation
matrix which can be easily obtained using the DCT2 (2-dimensional discrete
Cosine transform) (see [5] for details).

For the CGLS and PCGLS methods, the blurring matrix A whose size is
large is not constructed for both zero and reflexive boundary conditions since
its construction is very time-consuming and matrix-vector multiplication with
A can be performed without constructing A (see [4] for details).

For the G`-PCG method, the matrices Ar and Ac whose size is very small
compared to the size of A are constructed for both zero and reflexive boundary
conditions. Numerical experiments for parallel image deblurring algorithm using
the G`-PCG have been carried out only for Joomaks image of large size (see
Tables 5 and 6). For Lena image of small size, we do not have performance gains
from parallel execution since personal computer needs a lot of overhead time and
communication time among the cores. We only provide parallel performance
results for Gaussian and Motion PSFs since parallel performance behaviors for
Disk PSF are similar.

In all Tables, “PSNR” represents the PSNR values for the restored images,
PSNR0 represents the PSNR values for the blurred and noisy images, “Itime”
represents the elapsed CPU time in seconds required for iteration steps of G`-
CG, G`-PCG, CGLS and PCGLS methods, “IT” represents the number of it-
erations required for the iterative methods, and “λ” represents a near optimal
regularization parameter which is chosen by numerical tries.

In Tables 5 and 6, “`” represents the number of Cores to be used, S` stands
for the speedup of parallel execution on ` processors (or cores), and “Ttime”
represents the elapsed total CPU time in seconds which is the sum of Itime and
construction time for Ark , Ack , D(k), Mrk and Mck in Algorithm 2. Notice
that the construction time is much less than Itime. The notation (k1, k2, . . . , k`)
under the column labeled with IT refers to a collection of the number of iterations
required for every core. That is, ki indicates the number of iterations required
for Core i.
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As can be seen in Tables 1 to 4, G`-CG and G`-PCG with Kronecker product
preconditioners restore the true image as well as CGLS and PCGLS except for
the nonseparable Disk blur (see also Figure 1). The reason for worse performance
for Disk blur is that G`-CG and G`-PCG use a rank-1 approximation to the Disk
blur which is not a good approximation to the Disk blur. For all test problems,
G`-PCG with Kronecker product preconditioners yields a superior performance
in terms of both convergence rate and execution time. For reflexive boundary
condition, PCGLS has extremely faster convergence rate since the DCT2 type of
preconditioner is a very good approximation to the original matrix. As compared
with the G`-CG, Kronecker product preconditioners for G`-PCG proposed in
this paper work extremely well in terms of convergence rate. This means that
the Kronecker product preconditioner is a good approximation to the original
matrix.

As can be seen in Tables 5 and 6, the speedup of parallel execution on 4
processors (or cores) ranges from 1.30 to 1.88 depending upon the amount of
serial execution time (i.e., execution time on ` = 1). This means that the more
the serial execution time, the higher the speedup of parallel execution on ` = 4.
Since personal computers with multiple cores need a lot of communication time
among the cores and overhead time, parallel speedup on personal computers is
low. If the coarse-grained parallel algorithm is performed on advanced parallel
supercomputers with 4 processors, then its parallel speedup may be close to 4.
Notice that for parallel execution the number of iterations (i.e., IT) varies de-
pending upon cores, but the differences among the cores are at most 2. Since
computational amount of each core per iteration decreases as ` increases, small
difference of IT does not affect overall parallel performance much. Also notice
that PSNR values remain almost the same from parallel execution on 4 proces-
sors. This means that parallel execution on 4 processors does not deteriorate
the quality of image deblurring (see Figure 2).

Table 1. Numerical results for Lena image (Case 1)

PSF Method
Zero boundary condition Reflexive boundary condition

PSNR0 PSNR λ Itime IT PSNR0 PSNR λ Itime IT

Gaussian

PCGLS

27.57

31.39 0.025 1.93 13

28.78

32.47 0.03 0.47 1
CGLS 31.91 0.02 2.27 19 32.39 0.025 1.43 20

G`-PCG 31.63 0.03 0.26 5 32.34 0.035 0.29 6
G`-CG 31.91 0.02 0.46 19 32.39 0.025 0.47 20

Motion

PCGLS

27.42

34.05 0.03 2.06 14

28.16

35.47 0.035 0.60 2
CGLS 34.32 0.025 2.31 19 34.96 0.03 1.38 19

G`-PCG 34.40 0.025 0.26 5 35.20 0.03 0.29 6
G`-CG 34.22 0.025 0.46 19 34.86 0.03 0.45 19

Disk

PCGLS

27.59

32.18 0.03 1.69 11

28.77

33.50 0.03 0.47 1
CGLS 32.56 0.025 2.20 18 33.30 0.035 1.27 17

G`-PCG 31.24 0.035 0.33 7 32.08 0.04 0.29 6
G`-CG 31.50 0.025 0.45 18 32.14 0.035 0.39 16

7. Conclusions

In this paper, we have studied performance of the G`-PCG method with
Kronecker product preconditioners for image deblurring problems with nearly
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Table 2. Numerical results for Joomaks image (Case 1)

PSF Method
Zero boundary condition Reflexive boundary condition

PSNR0 PSNR λ Itime IT PSNR0 PSNR λ Itime IT

Gaussian

PCGLS

23.83

28.06 0.015 44.6 16

23.98

28.21 0.015 5.70 1
CGLS 27.79 0.015 60.9 27 27.87 0.015 35.0 28

G`-PCG 27.79 0.015 9.70 7 27.86 0.015 9.68 7
G`-CG 27.79 0.015 21.3 27 27.87 0.015 22.2 28

Motion

PCGLS

24.60

33.00 0.025 39.1 14

24.70

33.46 0.025 8.50 2
CGLS 32.64 0.02 52.2 23 32.69 0.025 28.2 22

G`-PCG 32.90 0.02 8.52 6 32.94 0.025 8.51 6
G`-CG 32.46 0.02 19.0 23 32.58 0.025 18.4 23

Disk

PCGLS

23.73

30.26 0.02 31.7 11

23.87

30.59 0.02 5.73 1
CGLS 29.88 0.02 53.9 24 30.03 0.02 31.6 25

G`-PCG 27.84 0.025 9.67 7 27.89 0.03 9.64 7
G`-CG 28.05 0.02 19.1 24 28.12 0.025 18.4 23

Table 3. Numerical results for Lena image (Case 2)

PSF Method
Zero boundary condition Reflexive boundary condition

PSNR0 PSNR λ Itime IT PSNR0 PSNR λ Itime IT

Gaussian

PCGLS

27.57

31.95 0.045 1.66 11

28.78

32.39 0.05 0.62 2
CGLS 32.05 0.035 2.16 18 32.34 0.04 1.38 19

G`-PCG 31.92 0.045 0.18 4 32.33 0.05 0.21 5
G`-CG 32.05 0.035 0.31 18 32.34 0.04 0.33 19

Motion

PCGLS

27.42

34.22 0.05 1.43 9

28.16

34.79 0.055 0.75 3
CGLS 33.92 0.05 1.96 16 34.44 0.055 1.20 16

G`-PCG 34.15 0.05 0.18 4 34.65 0.05 0.17 4
G`-CG 33.89 0.055 0.28 16 34.37 0.055 0.28 16

Disk

PCGLS

27.59

32.69 0.055 1.31 8

28.77

33.20 0.055 0.62 2
CGLS 32.72 0.045 2.06 17 33.18 0.05 1.26 17

G`-PCG 31.67 0.05 0.22 5 32.11 0.06 0.22 5
G`-CG 31.72 0.045 0.30 17 32.11 0.05 0.29 16

Table 4. Numerical results for Joomaks image (Case 2)

PSF Method
Zero boundary condition Reflexive boundary condition

PSNR0 PSNR λ Itime IT PSNR0 PSNR λ Itime IT

Gaussian

PCGLS

23.83

27.93 0.025 39.8 14

23.98

28.12 0.03 5.56 1
CGLS 27.80 0.02 65.8 29 27.82 0.02 37.0 30

G`-PCG 27.82 0.02 7.75 6 27.83 0.02 7.77 6
G`-CG 27.80 0.02 19.2 29 27.82 0.02 19.8 30

Motion

PCGLS

24.60

32.70 0.04 28.7 10

24.70

32.79 0.04 13.5 4
CGLS 32.15 0.035 47.4 21 32.25 0.04 26.4 21

G`-PCG 32.32 0.035 5.81 4 32.33 0.04 5.65 4
G`-CG 32.08 0.04 14.1 21 32.13 0.04 14.1 21

Disk

PCGLS

23.73

29.90 0.035 26.2 9

23.87

29.96 0.03 8.23 2
CGLS 29.72 0.03 53.7 24 29.68 0.035 28.7 23

G`-PCG 27.92 0.035 6.70 5 28.05 0.04 7.83 6
G`-CG 28.07 0.035 14.8 22 28.11 0.035 15.5 23

Table 5. Parallel performance results of G`-CG for Joomaks image

D PSF ` PSNR λ Ttime IT S`

Case 1

Gaussian
1 27.87

0.015
22.6 (28) 1

2 27.86 23.2 (29,28) 0.97
4 27.82 12.0 (29,29,28,28) 1.88

Motion
1 32.58

0.025
18.8 (23) 1

2 32.44 18.4 (23,23) 1.02
4 32.19 10.6 (23,25,23,23) 1.77

Case 2

Gaussian
1 27.82

0.02
20.5 (30) 1

2 27.80 20.7 (30,29) 0.99
4 27.74 11.2 (31,30,30,30) 1.80

Motion
1 32.13

0.04
14.7 (21) 1

2 32.02 15.5 (21,21) 0.95
4 31.82 8.53 (21,22,21,21) 1.72

separable PSFs. G`-CG and G`-PCG with Kronecker product preconditioners
restore the true image as well as CGLS and PCGLS when the PSF is well
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Table 6. Parallel performance results of G`-PCG for Joomaks image

D PSF ` PSNR λ Ttime IT S`

Case 1

Gaussian
1 27.86

0.015
10.27 (7) 1

2 27.91 10.65 (8,7) 0.96
4 27.85 6.59 (8,8,7,7) 1.56

Motion
1 32.94

0.025
9.11 (6) 1

2 32.74 9.05 (6,6) 1.01
4 32.37 6.20 (6,7,6,6) 1.47

Case 2

Gaussian
1 27.83

0.02
7.97 (6) 1

2 27.80 8.13 (6,6) 0.98
4 27.74 5.37 (6,6,6,6) 1.48

Motion
1 32.33

0.04
5.99 (4) 1

2 32.28 6.92 (4,4) 0.87
4 32.01 4.62 (5,5,4,4) 1.30

(a)True image (b)Blurred and noisy image (c)CGLS (PSNR=33.18)

(d)PCGLS (PSNR=33.20) (e)G`-CG (PSNR=32.11) (f)G`-PCG (PSNR=32.11)

Fig. 1. Lena image for Disk blur with reflexive BC ((c, d, e, f):
restored images for Case 2 of D ).

approximated by a rank-1 approximation to the PSF. For all test problems, G`-
PCG with Kronecker product preconditioners yields a superior performance in
terms of both convergence rate and execution time.

The proposed coarse-grained parallel deblurring algorithm using G`-PCG
with Kronecker product preconditioners performs quite efficiently on a personal
computer with large parallel overhead time. The speedup of parallel execution
on 4 cores ranges from 1.30 to 1.88 depending upon the amount of serial exe-
cution time. If the coarse-grained parallel algorithm is performed on advanced
parallel supercomputers with 4 processors, then its parallel speedup may be close
to 4. Notice that parallel execution does not deteriorate the quality of image
deblurring (see Tables 5 and 6).
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(a)True image (b)Blurred and noisy image (c)G`-CG (PSNR=32.19)

(d)G`-PCG (PSNR=32.37) (e)G`-CG (PSNR=31.82) (f)G`-PCG (PSNR=32.01)

Fig. 2. Joomaks image for Motion blur with reflexive BC ((c,
d): restored images on ` = 4 for Case 1 of D, (e, f): restored images

on ` = 4 for Case 2 of D).
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