• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.034 seconds

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Stability of an improved optimization iterative algorithm to study vibrations of the multi-scale solar cells subjected to wind excitation using Series-Fourier algorithm

  • Jing Pan;Yi Hu;Guanghua Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.45-61
    • /
    • 2024
  • This research explores the domain of organic solar cells, a photovoltaic technology employing organic electronics, which encompasses small organic molecules and conductive polymers for efficient light absorption and charge transport, leading to electricity generation from sunlight. A computer simulation is employed to scrutinize resonance and dynamic stability in OSCs, with a focus on size effects introduced by nonlocal strain gradient theory, incorporating additional terms in the governing equations related to displacement and time. Initially, the Navier method serves as an analytical solver to delve into the dynamics of design points. The accuracy of this initial step is verified through a meticulous comparison with high-quality literature. The findings underscore the substantial impact of viscoelastic foundations, size-dependent parameters, and geometric factors on the stability and dynamic deflection of OSCs, with a noteworthy emphasis on the amplified influence of size-dependent parameters in higher values of the different layers' thicknesses.

Demosaicing Algorithm by Gradient Edge Detection Filtering on Color Component (컬러 성분 에지 기울기 검출 필터링을 이용한 디모자이킹 알고리즘)

  • Jeon, Gwan-Ggil;Jung, Tae-Young;Kim, Dong-Hyung;Kim, Seung-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1138-1146
    • /
    • 2009
  • Digital cameras adopting a single CCD detector collect image color by subsampling in three color planes and successively interpolating the information to reconstruct full-resolution color images. Therefore, to recovery of a full-resolution color image from a color filter array (CFA) like the Bayer pattern is generally considered as an interpolation issue for the unknown color components. In this paper, we first calculate luminance component value by combining R, G, B channel component information which is quite different from the conventional demosaicing algorithm. Because conventional system calculates G channel component followed by computing R and B channel components. Integrating the obtained gradient edge information and the improved weighting function in luminance component, a new edge sensitive demosaicing technique is presented. Based on 24 well known testing images, simulation results proved that our presented high-quality demosaicing technique shows the best image quality performance when compared with several recently presented techniques.

Estimation of the Medium Transmission Using Graph-based Image Segmentation and Visibility Restoration (그래프 기반 영역 분할 방법을 이용한 매체 전달량 계산과 가시성 복원)

  • Kim, Sang-Kyoon;Park, Jong-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • In general, images of outdoor scenes often contain degradation due to dust, water drop, haze, fog, smoke and so on, as a result they cause the contrast reduction and color fading. Haze removal is not easier problem due to the inherent ambiguity between the haze and the underlying scene. So, we propose a novel method to solve single scene dehazing problem using the region segmentation based on graph algorithm that has used a gradient value as a cost function. We segment the scene into different regions according to depth-related information and then estimate the global atmospheric light. The medium transmission can be directly estimated by the threshold function of graph-based segmentation algorithm. After estimating the medium transmission, we can restore the haze-free scene. We evaluated the degree of the visibility restoration between the proposed method and the existing methods by calculating the gradient of the edge between the restored scene and the original scene. Results on a variety of outdoor haze scene demonstrated the powerful haze removal and enhanced image quality of the proposed method.

Active Sonar Classification Algorithm based on HOG Feature (HOG 특징 기반 능동 소나 식별 기법)

  • Shin, Hyunhak;Park, Jaihyun;Ku, Bonhwa;Seo, Iksu;Kim, Taehwan;Lim, Junseok;Ko, Hanseok;Hong, Wooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.

A STUDY ON A MULTI-LEVEL SUBSTRUCTURING METHOD FOR COMPUTATIONS OF FLUID FLOW (유동계산을 위한 다단계 부분 구조법에 대한 연구)

  • Kim J.W.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2005
  • Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.