• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.025 seconds

Economic Life Assessment of Power Transformer using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 전력용 변압기의 경제적 수명평가)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Electric utilities has been considered the necessity to introduce AM(asset management) of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. In order to make decisions in terms of repairs and replacements for power transformers, not only measuring by counting parts and labor costs, but comprehensive comparison including reliability and cost is needed. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, this paper presents an application of heuristic harmony search(HS) optimization algorithm to the convergence and the validity of economic life assessment of power transformer from LCC technique. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through an economic life assessment simulation of power transformer using HS optimization algorithm.

A Study on the Optimization Design of Check Valve for Marine Use (선박용 체크밸브의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements

  • Li, Shouju;Yu, Shen;Shangguan, Zichang;Wang, Zhiyun
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 2016
  • The hyperbolic stress-strain model has been shown to be valid for modeling nonlinear stress-strain behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill materials is a key problem for simulating dam deformations during both the dam construction period and the dam operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined from the triaxial compression experimental data. The investigation results show that the predicted strains provide satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by experimental investigation in a laboratory.

A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ) (GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발))

  • Lee, Hyoung-Min;Park, Gi-Hark
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

Design of Adaptive Fuzzy Sliding Mode Controller for Chattering Reduction (채터링 감소를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계)

  • Seo, Sam-Jun;Kim, Dong-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.752-758
    • /
    • 2004
  • In this paper, we proposed an adaptivefuzzy sliding control algorithm using gradient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satistfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

An Auto-Tunning Fuzzy Rule-Based Visual Servoing Algorithm for a Alave Arm (자동조정 퍼지룰을 이용한 슬레이브 암의 시각서보)

  • Kim, Ju-Gon;Cha, Dong-Hyeok;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3038-3047
    • /
    • 1996
  • In telerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand has drawn an interesting attention. As such a task ingenerally conducted in an unstructured environment, it is very difficult to define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning fuzzy rule-based visual servo algorithm. In this algorithm, a visual servo controller composed of fuzzy rules, receives feature errors as inputs and generates the change of have position as outputs. The fuzzy rules are tuned by using steepest gradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules are tuned automatically, this method can be applied to the visual servoing of a slave arm in real time. The effctiveness of the proposed algorithm is verified through a series of simulations and experiments. The results show that through the learning procedure, the slave arm and track object in real time with reasonable accuracy.

Design Optimization of Deep Groove Ball Bearing with Discrete Variables for High-Load Capacity (이산 설계변수를 포함하고 있는 깊은 홈 볼 베어링의 고부하용량 설계)

  • Yun, Gi-Chan;Jo, Yeong-Seok;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1940-1948
    • /
    • 2000
  • A design method for maximizing fatigue life of the deep groove ball bearing without enlarging mounting space is proposed by using a genetic algorithm. The use of gradient-based optimization methods for the design of the bearing is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. Constrains for manufacturing are applied in optimization scheme. Results obtained for several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increased about 9-34% compared with the standard ones.

Improving the Training Performance of Multilayer Neural Network by Using Stochastic Approximation and Backpropagation Algorithm (확률적 근사법과 후형질과 알고리즘을 이용한 다층 신경망의 학습성능 개선)

  • 조용현;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.145-154
    • /
    • 1994
  • This paper proposes an efficient method for improving the training performance of the neural network by using a hybrid of a stochastic approximation and a backpropagation algorithm. The proposed method improves the performance of the training by appliying a global optimization method which is a hybrid of a stochastic approximation and a backpropagation algorithm. The approximate initial point for a stochastic approximation and a backpropagation algorihtm. The approximate initial point for fast global optimization is estimated first by applying the stochastic approximation, and then the backpropagation algorithm, which is the fast gradient descent method, is applied for a high speed global optimization. And further speed-up of training is made possible by adjusting the training parameters of each of the output and the hidden layer adaptively to the standard deviation of the neuron output of each layer. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to that of the backpropagation, the Baba's MROM, and the Sun's method with randomized initial point settings. The results of adaptive adjusting of the training parameters show that the proposed method further improves the convergence speed about 20% in training.

  • PDF

A Video based Traffic Light Recognition System for Intelligent Vehicles (지능형 자동차를 위한 비디오 기반의 교통 신호등 인식 시스템)

  • Chu, Yeon Ho;Lee, Bok Joo;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2015
  • Traffic lights are common in cities and are important cues for the path planning of intelligent vehicles. In this paper, we propose a robust and efficient algorithm for recognizing traffic lights from video sequences captured by a low cost off-the-shelf camera. Instead of using color information for recognizing traffic lights, a shape based approach is adopted. In learning and detection phase, Histogram of Oriented Gradients (HOG) feature is used and a cascade classifier based on Adaboost algorithm is adopted as the main classifier for locating traffic lights. To decide the color of the traffic light, a technique based on histogram analysis in HSV color space is utilized. Experimental results on several video sequences from typical urban environment prove the effectiveness of the proposed algorithm.

An Approach to Combining Classifier with MIMO Fuzzy Model

  • Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.182-185
    • /
    • 2003
  • This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.

  • PDF