DOI QR코드

DOI QR Code

Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements

  • Li, Shouju (State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology) ;
  • Yu, Shen (State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology) ;
  • Shangguan, Zichang (Institute of Civil Engineering, Dalian Ocean University) ;
  • Wang, Zhiyun (Institute of Civil Engineering, Dalian Ocean University)
  • Received : 2014.10.07
  • Accepted : 2015.11.05
  • Published : 2016.01.25

Abstract

The hyperbolic stress-strain model has been shown to be valid for modeling nonlinear stress-strain behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill materials is a key problem for simulating dam deformations during both the dam construction period and the dam operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined from the triaxial compression experimental data. The investigation results show that the predicted strains provide satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by experimental investigation in a laboratory.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abbaspour, K.C. (2001), "Estimating unsaturated soil hydraulic parameters using ant colony optimization", Adv. Water Res., 24(8), 827-841. https://doi.org/10.1016/S0309-1708(01)00018-5
  2. Adili, A., Hasni, N., Kerkeni, C. and Nasrallah, S.B. (2010), "An inverse problem based on genetic algorithm to estimate thermophysical properties of fouling", Int. J. Therm. Sci., 49 (6), 889-900. https://doi.org/10.1016/j.ijthermalsci.2010.01.004
  3. Avril, S. and Pierron, F. (2007), "General framework for the identification of constitutive parameters from full-field measurements in linear elasticity", Int. J. Solids. Struct., 44(14-15), 4978-5002. https://doi.org/10.1016/j.ijsolstr.2006.12.018
  4. Avril, S., Marc, B. and, Bretelle, A.S. (2008a), "Overview of identification methods of mechanical parameters based on full-field measurements", Exp. Mech., 48(4), 381-402. https://doi.org/10.1007/s11340-008-9148-y
  5. Avril, S., Pierron, F., Pannier, Y. and Rotinat, R. (2008b), "Stress reconstruction and constitutive parameter identification in plane-stress elastoplastic problems using surface measurements of deformation fields", Exp. Mech., 48(4), 403-419. https://doi.org/10.1007/s11340-007-9084-2
  6. Bagheripour, M.H., Rahgozar, R., Pashnesaz, H. and Malekinejad, M. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., Int. J., 3(1), 61-81. https://doi.org/10.12989/gae.2011.3.1.061
  7. Cropper, W.P., Holm, J.A. and Miller, C.J. (2012), "An inverse analysis of a matrix population model using a genetic algorithm", Ecol. Inform., 7(1), 41-45. https://doi.org/10.1016/j.ecoinf.2011.06.002
  8. Desai, C.S. (2001), Mechanics of Material and Interface: The Disturbed State Concept, CRC Press, Boca Raton, FL, USA.
  9. Duncan, J.M. and Chang, C.Y. (1970), "Non-linear analysis of stress and strains in soils", J. Soil Mech. Found. Div., 96(5), 1629-1653.
  10. Fahey, M. and Carter, J.P. (1993), "A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model", Can. Geotech. J., 30(2), 348-362. https://doi.org/10.1139/t93-029
  11. Harrouni, K.E., Ouazar, D. and Walters, G.A. (1996), "Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method", Eng. Anal. Bound. Elem., 18(4), 287-296. https://doi.org/10.1016/S0955-7997(96)00037-9
  12. Li, S.J. and Liu, Y.X. (2006), "Identification of vibration loads on hydro generator by using hybrid genetic algorithm", Acta Mech. Sin., 22(6), 603-610. https://doi.org/10.1007/s10409-006-0040-7
  13. Li, S.J. and Liu, Y.X. (2008), "Aquifer parameter identification with simulated annealing algorithm and its application", Int. J. Environ. Develop., 5(2), 131-144.
  14. Mitra, S. and Mitra, A. (2012), "A genetic algorithms based technique for computing the nonlinear least squares estimates of the parameters of sum of exponentials model", Expert Syst. Appl., 39(7), 6370-6379. https://doi.org/10.1016/j.eswa.2011.12.033
  15. Silvestri, V. and Abou-Samra, G. (2009), "Analytical solution of stress-strain relationship of modified Cam clay in undrained shear", Geomech. Eng., Int. J., 1(4), 263-274. https://doi.org/10.12989/gae.2009.1.4.263
  16. Suched, L., Chanaton, S., Dariusz, W., Oh, E. and Arumugam, B. (2013), "Geotechnical parameters from pressuremeter tests for MRT Blue Line extension in Bangkok", Geomech. Eng., Int. J., 5(2), 99-108. https://doi.org/10.12989/gae.2013.5.2.099
  17. Timothy, D.S., Robert, M.E. and Joseph, J.V. (1994), "Hyperbolic stress-strain parameters for silts", J. Geotech. Eng., 120(2), 420-431. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(420)
  18. Varadarajan, A., Sharma, K.G. and Venkatachalam, K. (2003), "Testing and modeling two rockfill materials", J. Geotech. Geoenviron. Eng., 129(3), 206-218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206)
  19. Varadarajan, A., Sharma, K.G. and Abbas, S.M. (2006), "Constitutive model for rockfill materials and determination of material constants", Int. J. Geomech., 6(4), 226-237. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:4(226)
  20. Xu, B., Zou, D. and Liu, H. (2012), "Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model", Comput. Geotech., 43, 143-154. https://doi.org/10.1016/j.compgeo.2012.03.002
  21. Yang, Y.Y., Linkens, D.A. and Mahfouf, M. (2003), "Genetic algorithms and hybrid neural network modelling for aluminium stress-strain prediction", J. Syst. Control Eng., 217(1), 7-21.
  22. Yeh, W.W. (1981), "Aquifer parameter identification with optimum dimension in parameterization", Water Resour. Res., 17(3), 664-672 https://doi.org/10.1029/WR017i003p00664
  23. Yeh, W.W. (1986), "Review of parameter identification procedures in groundwater hydrology: The inverse problem", Water Resour. Res., 22(2), 95-108. https://doi.org/10.1029/WR022i002p00095
  24. Zheng, D.J., Cheng, L. and Bao, T.F. (2013), "Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm", Comput. Geotech., 47, 68-77. https://doi.org/10.1016/j.compgeo.2012.07.006
  25. Zhou, W., Chang, X.L., Zhou, C.B. and Liu, X.H. (2010), "Creep analysis of high concrete-faced rockfill dam", Int. J. Numer. Method. Biomed. Eng., 26(11), 1477-1492. https://doi.org/10.1002/cnm.1230
  26. Zhou, W., Hu, J.J., Chang, X.L. and Zhou, C.B. (2011), "Settlement analysis of the Shuibuya concrete-face rockfill dam", Comput. Geotech., 38(2), 269-280. https://doi.org/10.1016/j.compgeo.2010.10.004

Cited by

  1. The Shear Strength of the Nature Loess Joint: A Case Study in Shaanxi Province vol.47, pp.3, 2018, https://doi.org/10.1520/JTE20170759
  2. A strain hardening model for the stress-path-dependent shear behavior of rockfills vol.13, pp.5, 2016, https://doi.org/10.12989/gae.2017.13.5.743
  3. Experimental investigation of effects of sand contamination on strain modulus of railway ballast vol.14, pp.6, 2018, https://doi.org/10.12989/gae.2018.14.6.563
  4. Numerical analysis of sheet pile wall structure considering soil-structure interaction vol.16, pp.3, 2016, https://doi.org/10.12989/gae.2018.16.3.309
  5. Laboratory experiments on the improvement of rockfill materials with composite grout vol.17, pp.3, 2019, https://doi.org/10.12989/gae.2019.17.3.307
  6. Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model vol.19, pp.2, 2016, https://doi.org/10.12989/gae.2019.19.2.127
  7. Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods vol.6, pp.2, 2016, https://doi.org/10.12989/acd.2021.6.2.135