• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.028 seconds

A new training method of multilayer neural networks using a hybrid of backpropagation algorithm and dynamic tunneling system (후향전파 알고리즘과 동적터널링 시스템을 조합한 다층신경망의 새로운 학습방법)

  • 조용현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.201-208
    • /
    • 1996
  • This paper proposes an efficient method for improving the training performance of the neural network using a hybrid of backpropagation algorithm and dynamic tunneling system.The backpropagation algorithm, which is the fast gradient descent method, is applied for high-speed optimization. The dynamic tunneling system, which is the deterministic method iwth a tunneling phenomenone, is applied for blobal optimization. Converging to the local minima by using the backpropagation algorithm, the approximate initial point for escaping the local minima is estimated by the pattern classification, and the simulation results show that the performance of proposed method is superior th that of backpropagation algorithm with randomized initial point settings.

  • PDF

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC ARROWHEAD MATRICES

  • Ali Beik, Fatemeh Panjeh;Salkuyeh, Davod Khojasteh
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.349-372
    • /
    • 2015
  • This paper concerns with exploiting an oblique projection technique to solve a general class of large and sparse least squares problem over symmetric arrowhead matrices. As a matter of fact, we develop the conjugate gradient least squares (CGLS) algorithm to obtain the minimum norm symmetric arrowhead least squares solution of the general coupled matrix equations. Furthermore, an approach is offered for computing the optimal approximate symmetric arrowhead solution of the mentioned least squares problem corresponding to a given arbitrary matrix group. In addition, the minimization property of the proposed algorithm is established by utilizing the feature of approximate solutions derived by the projection method. Finally, some numerical experiments are examined which reveal the applicability and feasibility of the handled algorithm.

An analysis and modification of a unified phase 1-phase 2 semi-infinite constrained optimization algorithm

  • Yang, Hyun-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.483-487
    • /
    • 1994
  • In this paper, we analize the effect of a steering water used in a unified phase I-phase II semi-infinite constrained optimization algorithm and present a new algorithm based on the facts that when the point x is far away from the feasible region where all the constraints are satisfied, reaching to the feasible region is more important than minimizing the cost function and that when the point x is near the region, it is more efficient to try to reach the feasible region and to minimize the cost function concurrently. Also, the angle between the search direction vector and the gradient of the cost function is considered when the steering parameter value is computed. Even though changing the steering parameter does not change the rate of convergence of the algorithm, we show through some examples that the proposed algorithm performs better than the other algorithms.

  • PDF

Optimization of Dynamic Neural Networks Considering Stability and Design of Controller for Nonlinear Systems (안정성을 고려한 동적 신경망의 최적화와 비선형 시스템 제어기 설계)

  • 유동완;전순용;서보혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.189-199
    • /
    • 1999
  • This paper presents an optimization algorithm for a stable Self Dynamic Neural Network(SDNN) using genetic algorithm. Optimized SDNN is applied to a problem of controlling nonlinear dynamical systems. SDNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real-time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDW has considerably fewer weights than DNN. Since there is no interlink among the hidden layer. The object of proposed algorithm is that the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed optimized SDNN considering stability is demonstrated by case studies.

  • PDF

Smoke Image Recognition Method Based on the optimization of SVM parameters with Improved Fruit Fly Algorithm

  • Liu, Jingwen;Tan, Junshan;Qin, Jiaohua;Xiang, Xuyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3534-3549
    • /
    • 2020
  • The traditional method of smoke image recognition has low accuracy. For this reason, we proposed an algorithm based on the good group of IMFOA which is GMFOA to optimize the parameters of SVM. Firstly, we divide the motion region by combining the three-frame difference algorithm and the ViBe algorithm. Then, we divide it into several parts and extract the histogram of oriented gradient and volume local binary patterns of each part. Finally, we use the GMFOA to optimize the parameters of SVM and multiple kernel learning algorithms to Classify smoke images. The experimental results show that the classification ability of our method is better than other methods, and it can better adapt to the complex environmental conditions.

Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms (하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계)

  • Ryoo, Dong-Wan;Kwon, Jae-Cheol;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

Intelligent Multimode Target Tracking Using Fuzzy Logic (퍼지 로직을 이용한 지능적인 다중모드 목표물 추적)

  • 조재수;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • An intelligent multimode target tracking algorithm using fuzzy logic is presented. Multimode tracking represents a synergistic approach that utilizes a variety of tracking techniques(centroid, correlation, etc.) to overcome the limitations inherent in any single-mode tracker. The design challenge for this type of multimode tracker is the data fusion algorithm. designs for this algorithm are based on heuristic rather than analytical approaches. A correlation-tracking algorithm seeks to align the incoming target image with a reference in age of the target, but has a critical problem, so called drift phenomenon. In this paper we will suggest a robust correlation tracker with gradient preprocessor combined by centroid algorithm to overcome the drift problem.

  • PDF

The Improved Watershed Algorithm using Adaptive Local Threshold (적응적 지역 임계치를 이용한 개선된 워터쉐드 알고리즘)

  • Lee Seok-Hee;Kwon Dong-Jin;Kwak Nae-Joung;Ahn Jae-Hyeong
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.891-894
    • /
    • 2004
  • This paper proposes an improved image segmentation algorithm by the watershed algorithm based on the local adaptive threshold on local minima search and the fixing threshold on label allocation. The previous watershed algorithm generates the problem of over-segmentation. The over-segmentation makes the boundary in the inaccuracy region by occurring around the object. In order to solve those problems we quantize the input color image by the vector quantization, remove noise and find the gradient image. We sorted local minima applying the local adaptive threshold on local minima search of the input color image. The simulation results show that the proposed algorithm controls over-segmentation and makes the fine boundary around segmented region applying the fixing threshold based on sorted local minima on label allocation.

  • PDF

A Study on the Convergence Properties of the Two-dimensional Adaptive Lattice Algorithm (이차원 적응 Lattice 알고리즘의 수렴특성에 관한 연구)

  • Baik, Heung Ki;Lee, Chong Kak
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.578-585
    • /
    • 1986
  • This paper describes a new two-dimensional adaptive lattice algorithm which determines reflection coefficients recursively by applying the gradient search technique to a two-dimensional lattice filter proposed by Parker and Kayran. The convergence characteristics of the proposed algorithm are also described. A new tow-dimensional adaptive lattice \ulcorneralgorithm has been obtained through the application of the \ulcorneralgorithm to the two-dimention adaptive lattice algorithm. Computer simulation proves that the convergence speed of the two-dimension adaptive lattice \ulcorneralgorithm is reladtively higher than that of the conventional adaptive lattice algorithm when \ulcornerhas a small value.

  • PDF