• Title/Summary/Keyword: graded ideal

Search Result 39, Processing Time 0.025 seconds

ON GRADED 2-ABSORBING PRIMARY AND GRADED WEAKLY 2-ABSORBING PRIMARY IDEALS

  • Al-Zoubi, Khaldoun;Sharafat, Nisreen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.675-684
    • /
    • 2017
  • Let G be a group with identity e and let R be a G-graded ring. In this paper, we introduce and study graded 2-absorbing primary and graded weakly 2-absorbing primary ideals of a graded ring which are different from 2-absorbing primary and weakly 2-absorbing primary ideals. We give some properties and characterizations of these ideals and their homogeneous components.

ON GRADED RADICALLY PRINCIPAL IDEALS

  • Abu-Dawwas, Rashid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1401-1407
    • /
    • 2021
  • Let R be a commutative G-graded ring with a nonzero unity. In this article, we introduce the concept of graded radically principal ideals. A graded ideal I of R is said to be graded radically principal if Grad(I) = Grad(〈c〉) for some homogeneous c ∈ R, where Grad(I) is the graded radical of I. The graded ring R is said to be graded radically principal if every graded ideal of R is graded radically principal. We study graded radically principal rings. We prove an analogue of the Cohen theorem, in the graded case, precisely, a graded ring is graded radically principal if and only if every graded prime ideal is graded radically principal. Finally we study the graded radically principal property for the polynomial ring R[X].

ON GRADED N-IRREDUCIBLE IDEALS OF COMMUTATIVE GRADED RINGS

  • Anass Assarrar;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1001-1017
    • /
    • 2023
  • Let R be a commutative graded ring with nonzero identity and n a positive integer. Our principal aim in this paper is to introduce and study the notions of graded n-irreducible and strongly graded n-irreducible ideals which are generalizations of n-irreducible and strongly n-irreducible ideals to the context of graded rings, respectively. A proper graded ideal I of R is called graded n-irreducible (respectively, strongly graded n-irreducible) if for each graded ideals I1, . . . , In+1 of R, I = I1 ∩ · · · ∩ In+1 (respectively, I1 ∩ · · · ∩ In+1 ⊆ I ) implies that there are n of the Ii 's whose intersection is I (respectively, whose intersection is in I). In order to give a graded study to this notions, we give the graded version of several other results, some of them are well known. Finally, as a special result, we give an example of a graded n-irreducible ideal which is not an n-irreducible ideal and an example of a graded ideal which is graded n-irreducible, but not graded (n - 1)-irreducible.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

Results of Graded Local Cohomology Modules with respect to a Pair of Ideals

  • Dehghani-Zadeh, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Let $R ={\oplus}_{n{\in}Z}R_n$ be a graded commutative Noetherian ring and let I be a graded ideal of R and J be an arbitrary ideal. It is shown that the i-th generalized local cohomology module of graded module M with respect to the (I, J), is graded. Also, the asymptotic behaviour of the homogeneous components of $H^i_{I,J}(M)$ is investigated for some i's with a specified property.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

GRADED UNIFORMLY pr-IDEALS

  • Abu-Dawwas, Rashid;Refai, Mashhoor
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.195-204
    • /
    • 2021
  • Let R be a G-graded commutative ring with a nonzero unity and P be a proper graded ideal of R. Then P is said to be a graded uniformly pr-ideal of R if there exists n ∈ ℕ such that whenever a, b ∈ h(R) with ab ∈ P and Ann(a) = {0}, then bn ∈ P. The smallest such n is called the order of P and is denoted by ordR(P). In this article, we study the characterizations on this new class of graded ideals, and investigate the behaviour of graded uniformly pr-ideals in graded factor rings and in direct product of graded rings.

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF