• Title/Summary/Keyword: graded

Search Result 2,494, Processing Time 0.023 seconds

ON GRADED RADICALLY PRINCIPAL IDEALS

  • Abu-Dawwas, Rashid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1401-1407
    • /
    • 2021
  • Let R be a commutative G-graded ring with a nonzero unity. In this article, we introduce the concept of graded radically principal ideals. A graded ideal I of R is said to be graded radically principal if Grad(I) = Grad(〈c〉) for some homogeneous c ∈ R, where Grad(I) is the graded radical of I. The graded ring R is said to be graded radically principal if every graded ideal of R is graded radically principal. We study graded radically principal rings. We prove an analogue of the Cohen theorem, in the graded case, precisely, a graded ring is graded radically principal if and only if every graded prime ideal is graded radically principal. Finally we study the graded radically principal property for the polynomial ring R[X].

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

ON GRADED N-IRREDUCIBLE IDEALS OF COMMUTATIVE GRADED RINGS

  • Anass Assarrar;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1001-1017
    • /
    • 2023
  • Let R be a commutative graded ring with nonzero identity and n a positive integer. Our principal aim in this paper is to introduce and study the notions of graded n-irreducible and strongly graded n-irreducible ideals which are generalizations of n-irreducible and strongly n-irreducible ideals to the context of graded rings, respectively. A proper graded ideal I of R is called graded n-irreducible (respectively, strongly graded n-irreducible) if for each graded ideals I1, . . . , In+1 of R, I = I1 ∩ · · · ∩ In+1 (respectively, I1 ∩ · · · ∩ In+1 ⊆ I ) implies that there are n of the Ii 's whose intersection is I (respectively, whose intersection is in I). In order to give a graded study to this notions, we give the graded version of several other results, some of them are well known. Finally, as a special result, we give an example of a graded n-irreducible ideal which is not an n-irreducible ideal and an example of a graded ideal which is graded n-irreducible, but not graded (n - 1)-irreducible.

On Graded Quasi-Prime Submodules

  • AL-ZOUBI, KHALDOUN;ABU-DAWWAS, RASHID
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.259-266
    • /
    • 2015
  • Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded quasi-prime submodules and give some basic results about graded quasi-prime submodules of graded modules. Special attention has been paid, when graded modules are graded multiplication, to find extra properties of these submodules. Furthermore, a topology related to graded quasi-prime submodules is introduced.

ON GRADED 2-ABSORBING PRIMARY AND GRADED WEAKLY 2-ABSORBING PRIMARY IDEALS

  • Al-Zoubi, Khaldoun;Sharafat, Nisreen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.675-684
    • /
    • 2017
  • Let G be a group with identity e and let R be a G-graded ring. In this paper, we introduce and study graded 2-absorbing primary and graded weakly 2-absorbing primary ideals of a graded ring which are different from 2-absorbing primary and weakly 2-absorbing primary ideals. We give some properties and characterizations of these ideals and their homogeneous components.

DECOMPOSITIONS OF GRADED MAXIMAL SUBMODULES

  • Moh'd, Fida
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • In this paper, we present different decompositions of graded maximal submodules of a graded module. From these decompositions, we derive decompositions of the graded Jacobson radical of a graded module. Using these decompositions, we prove new theorems about graded maximal submodules, improve old theorems, and give other proofs for old theorems.

GRADED PRIMAL SUBMODULES OF GRADED MODULES

  • Darani, Ahmad Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.927-938
    • /
    • 2011
  • Let G be an abelian monoid with identity e. Let R be a G-graded commutative ring, and M a graded R-module. In this paper we first introduce the concept of graded primal submodules of M an give some basic results concerning this class of submodules. Then we characterize the graded primal ideals of the idealization R(+)M.

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

GROUP GRADED TYPES OF BÉZOUT MODULES

  • Ahmed, Mamoon;Moh'D, Fida
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.523-534
    • /
    • 2017
  • In this paper, we introduce two group graded types of $B{\acute{e}}zout$ modules, namely graded-$B{\acute{e}}zout$ modules and weakly graded-$B{\acute{e}}zout$ modules, which are two $B{\acute{e}}zout$ versions in Graded Module Theory. We investigate the relationship among the three types of $B{\acute{e}}zout$ modules, the ordinary $B{\acute{e}}zout$ modules and the two graded types of $B{\acute{e}}zout$ modules. Also, we study the structure of these new $B{\acute{e}}zout$ modules along with different properties; for instance, "A graded-$B{\acute{e}}zout$ R-module, with R being a Noetherian ring, is Noetherien iff it is gr-Noetherian".