• Title/Summary/Keyword: gradation design

Search Result 99, Processing Time 0.023 seconds

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

A Study on the Textile Design by Computer Graphics (컴퓨터 그래픽에 의한 텍 스타일 디자인 연구(I) -Printing Patterns Design 중심으로-)

  • 남후선
    • Archives of design research
    • /
    • v.5 no.1
    • /
    • pp.57-68
    • /
    • 1992
  • The purpose of this study was to describe patterns of two dimensions, clothes of three dimensions. The IBM 32Bit Computer Graphics was used in this study. TIPS, LUMENA, FREE STYLE and TOP AS were used as soft wares. The procedures of study were as follows; 1.Selection of motives. 2.Selection of color and gradation. 3.Making patterns. 4.Input patterns of two dimensions on TOP AS. 5.Making Mannequin and fashion illustration. 6.Mapping patterns onto fashion illustration.

  • PDF

The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function

  • Hwang, C.L.;Hsieh, S.L.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.425-436
    • /
    • 2007
  • This study is mainly focused on applying Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of a reactive powder mortar (RPM), also known as reactive powder concrete (RPC), with the aid of error function, and then to study the effect of fly ash/slag on the performance of RPM. The solid particle is assumed to be spherical particles. Then, the void volume of paste ($V_{\nu}$) and the paste content with specific quality can be obtained. As conclusion, under Fuller's ideal grading curve, the amount of fly ash/slag mixture is higher than that with silica fume along due to it better filled the void within solid particle and obtains higher packing density.

Up-gradation in Human Resource Management Practices for the Biotech Industry in India

  • Kumari, Neeraj
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2015
  • The 21st century belongs to biotechnology as it made profound impact in the field of health, food, agriculture and environmental protection. India's biotechnology industry is poised to record substantial growth, perhaps even overtake the robust IT industry. The objectives of the study are to determine the existing HR practices in Biotech Industry and to understand the need for the up gradation in existing HR Policies. Conclusive and descriptive research design has been used. Data is collected from 122 employees in 23 companies of Biotech Industry. It was found that Biotechnology companies require managers with unique qualities. The lack of solid managerial training and the associated risk of failure often have long-term consequences for the careers of research professionals. The efforts to achieve excellence through a focus on learning, quality, teamwork, and reengineering are driven by the way organizations get things done and how they treat people. Biotech industry is trying to establish itself in India for last one decade but is not showing any phenomenal growth because they still do not valuing their human resource as much they should be.

Development of a G-Code Generator for Color Gradation Generations in a Mixing Chamber FDM 3D Printers (Mixing chamber를 사용하여 그라데이션 색상을 구현하기 위한 G-code 생성기 개발)

  • Noh, Kyoung-Seok;Seo, Hae-Won;Kim, Tae-Young;Lee, Yong-Gu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • The recent 3D printing industry has been focusing on developing 3D printers to fulfill the user's need to bring more colorful and realistic outcomes. Several 3D printers have deployed multiple extruders to print different colors. However, this method has a limit on its availability of colors. To solve this, recent research is focused on using mixing chambers to mix the possible colors to provide more color availability. In this paper, we discuss the environment and algorithm behind the development of G-code which allows a gradation effect of the mix of two filaments. The generation algorithm to make gradient G-code has been implemented in Cura using C ++ and Python.

Evaluation of Correlation between Aggregate Gradation and Dynamic Modulus with Statistical Analysis (통계분석을 통한 골재입도와 동탄성계수 상관도 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In recent, lots of researches for mechanical-empirical design concept for asphalt pavement are on going. AASHTO 2002 Design Guide in USA and KPRP(Korean Pavement Research Program) in Korea are under developing. In these programs, the mechanical properties of hot mix asphalt are a key role for design and analysis. Unfortunately, there is no proper database on the mechanical properties of hot mix asphalt, such as dynamic modulus. The use of dynamic modulus has couple of good advantages which is based on temperature, traffic loading and frequency on pavement. In this research, the verification of the relationship between maximum nominal aggregate size and dynamic modulus has been carried out. Also, test specimen size effect on dynamic modulus has been conducted. Considering the limitation of laboratory testing machine in Korea, test specimen with 100mm diameter and 150mm height is recommended for dynamic modulus test. Also, as the maximum nominal aggregate size increases, the dynamic modulus of hot mix asphalt increases.

  • PDF

On the dynamic behavior of functionally graded cracked beams resting on winkler foundation under moving load

  • Alaa A. Abdelrahman;Mohamed Ashry;Amal E. Alshorbagy;Mohamed A. Eltaher;Waleed S. Abdalla
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.169-194
    • /
    • 2024
  • Although the excellent characteristics of functionally graded materials (FGMs) cracks could be found due to manufacturing defects or extreme working conditions. The existence of these cracks may threaten the material or structural strength, reliability, and lifetime. Due to high cost and restrictions offered by practical operational features these cracked components couldn't be replaced immediately. Such circumstances lead to the requirement of assessing the dynamic performance of cracked functionally graded structural components especially under moving objects. The present study aims to comprehensively investigate the dynamic behavior of functionally graded cracked Timoshenko beams (FGCTBs) resting on Winkler foundation and subjected to moving load through shear locking free finite elements methodology. The through thickness material distribution is simulated by the exponential gradation law. The geometric discontinuity due to cracks is represented using the massless rotational spring approach. The shear locking phenomena is avoided by using the different interpolation functions orders for both deflections and rotations. Based on Timoshenko beam element, a shear locking free finite elements methodology is developed. The unconditionally stable Newmark procedure is employed to solve the forced vibration problem. Accuracy of the developed procedure is verified by comparing the obtained results with the available results and an excellent agreement is found. Parametric studies are conducted to explore effects of the geometrical, material characteristics, crack geometrical characteristics, the elastic foundation parameter, and the moving load speed on the dynamic behavior for different boundary conditions. Obtained results revealed the significant effect these parameters on the dynamic performance of FGCTBs.

K Hospital Lasik Center Interior Design (K병원 라식센타 인테리어 디자인)

  • Kim, Jung-Shin;Im, Oh-Yeoun
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.273-274
    • /
    • 2005
  • The purpose of this design is to find out the design for an ophthalmic hospital focusing on the patient needs and changed healthcare environment. A cellularized hospital system appears variety design. This space needs well-balanced and ease of mind, because of ophthalmic needs a clear description attention. The concept of this design is to give human colour intellect and rich colour-sense. The waiting area wall is finished the graphic design sheet of leaves, which is covered with the fluting glass and indirect lighting. The colour is extracted in nature. The colour techniques of graphic design is gradation, the colour plan select from Y to G-GB. The material is selected within natural colour. The treatment area is functional space and the waiting area is sensitivity space. The hospital design must change with user as a leader.

  • PDF

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.

Gradation Image Processing for Text Recognition in Road Signs Using Image Division and Merging

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.