COVID-19 팬데믹 영향으로 대면 소통이 어려워지면서 비대면 소통의 영향을 파악하는 연구가 진행되고 있으나 메신저 애플리케이션 리뷰를 통해 이를 살펴본 연구는 미비하다. 본 연구는 구글 플레이 스토어 내의 메신저 애플리케이션 리뷰 데이터를 수집하여 LDA(Latent Dirichlet Allocation)토픽 모델링을 통해 팬데믹의 영향을 파악하고, 이에 따른 서비스 전략 방안을 제시하고자 한다. 연구에서는 팬데믹이 시작된 시점과 사용자가 부여한 평점을 기준으로 데이터를 분류하였다. 분석 결과 주로 중장년층이 메신저를 사용하는 것으로 나타났으며, 팬데믹 이후에는 가족과의 소통이 증가한 것으로 확인되었다. 사용자들은 애플리케이션의 업데이트에 대해 불만을 표현하였으며, 변화에 대한 적응이 어려움을 보였다. 이에 업데이트 주기를 조정하고 사용자들의 의견을 적극 수용하는 개발접근이 필요하다. 또한, 직관적이고 간편한 사용자 인터페이스(UI)를 제공한다면 사용자 만족도를 향상시킬 수 있을 것으로 기대된다.
Background: In recent years, the rise of workplace racial discrimination and microaggressions has decreased the efficiency and productivity of organizations and institutions, and realization of organizational goals globally. Accordingly, it was decided to conduct a systematic review and meta-analysis in the present study with the aim of investigating the prevalence of microaggression and racial discrimination in the workplace. Methods: The PubMed, Scopus, Web of Science, ScienceDirect and Google Scholar databases were systematically searched for studies that had reported the effects of work stress among managers. The search did include a lower time limit and was conducted in June 2023. The heterogeneity of the studies was investigated using the I2 index, and accordingly random effects method was adopted for meta-analysis. Data analysis was conducted with the Comprehensive Meta-Analysis (v.2) software. Results: In the review of seven studies with a sample size of 2998 people, the overall prevalence of microaggression and racial discrimination in the workplace was found to be 73.6% and 18.8%, respectively. Publication bias within the selected studies was examined with the Egger's test, which indicated the absence of publication bias for the pooled prevalence of workplace microaggression (p: 0.264) and for the pooled prevalence of workplace racial discrimination (p: 0.061). Conclusion: The results obtained from this report indicate the high impact of micro-aggression and racial discrimination in the workplace. Considering the negative effects of such behaviours, the findings from this study will be helpful to managers and health policymakers.
이 연구에서는 COVID-19 발병 전후 대학도서관 홈페이지 실제 이용 데이터를 조사하여 이용자들의 이용행태를 분석하고, 바이러스 발병 이전과 이후의 데이터를 대조하여, 팬데믹 상황에서 대학도서관이 보다 효율적인 정보서비스를 할 수 있도록 개선방안을 제안하고자 한다. 이 연구는 C대학교 홈페이지에서 이루어진 이용자 트래픽을 '구글애널리틱스를 활용하여', COVID-19 바이러스가 발병하기 이전인 2018년 1월부터 2018년 12월까지와 바이러스 발병 이후인 2020년 1월부터 2020년 12월까지를 비교분석하였다. 웹 트래픽 변수는 세션, 사용자, 페이지뷰 수, 세션당 페이지 수, 평균 세션 시간, 이탈률을 측정지표를 기준으로 '이용자 정보', '경로', '사이트 행동' 3가지 특성으로 구분하여 분석하였다. 연구결과를 요약하면, 첫째, COVID-19 발병 이전 1월 1일부터 1월 20일까지의 데이터와 대조했을 때, 2018년 이후 사용자, 신규방문자, 세션 모두 3년 동안 감소하였지만, 2020년은 2019년 대비 사용자, 신규 방문자, 세션 모두 증가하였으며, 2020년 바이러스 발병 이전 상승세를 보였던 사용자당 세션 수, 페이지뷰 수, 세션당 페이지 수가 크게 증가하였다. 둘째, 사회적 거리 두기 2단계로 격상함에 따라 대학도서관 홈페이지 이용 추이에도 변화가 나타났다. 재학생이 가장 적었던 2020년, 2018년 대비 2020년에 페이지뷰가 10만 뷰 더 증가했으며, 세션당 페이지 수 역시 2018년 대비 약 2페이지를 더 조회한 10.46을 기록했다. 이탈률 역시 2018년, 2019년 14.38을 기록한데 반해, 2020년 1% 포인트 가량 감소한 13.05를 기록하여 사회적 거리 두기 단계가 격상한 시점에, 더욱 활발한 홈페이지 이용이 이루어졌다.
본 연구의 목적은 연구데이터 서비스 자체의 유용성과 연구데이터에 대한 사용경험 기반의 유용성 측면에서 평가 모형을 개발하는 것이다. 다양한 사례에서 도출한 데이터 서비스의 유용성 평가 요소로부터 연구데이터에 내재된 평가척도인 검색성, 접근성, 상호운용성, 재활용성 4개와 각각의 측정지표 총 20개를 도출하였다. 그리고 Google Analytics, YouTube 광고료 책정 기준, 서울특별시, Altmetrics의 사례를 분석하여 연구데이터에 대한 이용자 경험 기반의 유용성 측정지표 12개를 도출하였다. 평가척도와 측정지표에 대한 타당성과 신뢰성 검정을 위해 연구데이터의 잠재적 이용자 164명을 대상으로 설문조사를 실시하였다. 평가척도의 타당성 검정을 위해 KMO Bartlett 분석을 하였으며, 측정지표의 성분분석을 위해 주성분 분석과 베리맥스 회전분석법을 사용하였다. 내재적 평가척도의 경우 4개 척도 모두 KMO Bartlett의 타당성 값을 충족시켰으며, 평가척도에 대한 측정지표의 성분분석 결과 모두 단일 성분으로 나타나 현재의 척도로 해당 지표에 대한 설명이 가능하였다. 그러나 이용자 경험 기반의 12개 측정지표의 성분분석 결과는 2개 성분으로 나누어지는 것으로 나타나 각각을 활용도와 참여도라는 개념의 2개 평가척도로 구분하였다. Cronbach's alpha 계수에 의한 신뢰도 측정 결과 6개의 평가척도 모두 0.6 이상의 측정치를 충족시키는 것으로 나타났다.
인터넷과 모바일 서비스의 증가로 유무선 웹 콘텐츠 서비스 이용이 증가하고 보다 다양한 콘텐츠 수요가 발생하고 있다. 경쟁력 있는 콘텐츠를 제공하는 웹사이트로 살아남기 위해 그리고 접근성, 웹표준에 대한 기술적 오류를 없애고 콘텐츠 이용률이 높은 사이트가 되기 위해서는 마케팅 및 캠페인과 같은 이벤트도 필요하지만 무엇보다도 정기적인 사이트 평가를 통하여 문제점을 진단하고 이를 해결하는 노력이 요구된다. 본 논문에서는 웹콘텐츠 서비스를 제공하는 사이트 평가 방법을 크게 정량적 방법과 정성적 방법으로 구분하여 제시하고 정량적 방법의 타당성을 검증하기 위해 국내 138개 홈페이지에 대한 평가 결과를 분석하였다. 정량평가를 위하여 접근성, 표준성 및 이용성 항목으로 구분하고 접근성은 K-WAH(Korea-Web Accessibility Helper)를 이용하여 인식 운용 이해의 용이성 및 기술적 진보성 항목에서의 오류수를 진단하고 표준성은 W3C Validator를 이용하여 웹표준의 오류 및 경고수를 분석하며, 이용성은 구글 애널리틱스를 이용하여 사용자 방문수, 평균 방문시간, 이탈률 등을 평가한다. 그리고 웹사이트에 대한 비용(구축 및 운용비)을 고려하여 정량평가와 비용 사이의 상관관계를 분석한다. 분석 결과, 100점 만점으로 환산하였을 때, 평균 55점, 표준편차 14점으로 평가되었으며 정량평가 점수와 비용 사이에는 양(+)의 상관관계가 존재하나 상관계수는 0.058로 그다지 높지 않음을 알 수 있다.
간편 결제 서비스는 간편 인증 수단을 이용한 결제 및 송금 서비스이다. 코로나 19로 인해 온라인 거래가 증가하면서 간편 결제 서비스 이용이 증가하고 있다. 이와 함께 네이버페이, 카카오페이, 토스와 같은 전자금융업이 간편 결제 시장의 경쟁 구도를 다각화하고 있다. 해외의 핀테크 기업인 PayPal과 Alibaba는 자국 내 독보적인 점유율을 보유하고 있지만, 국내 간편 결제 시장은 독보적인 점유율을 차지하고 있는 업체가 없어 경쟁이 심화되고 있다. 본 연구에서는 간편 결제 시장 참여자를 전자금융업자, 휴대폰 제조업자, 금융회사로 분류하고, 각 업종의 대표적인 서비스들에 대해 SWOT 분석을 진행하였다. 구글 플레이스토어 실 사용자 후기를 토픽모델링 기법을 사용하여 분석하였고, 긍정 토픽을 강점으로 부정 토픽을 약점으로 활용하였다. 또한, 뉴스 기사를 P(정치), E(경제), S(사회), T(기술)로 나누어 토픽모델링을 진행하여 간편 결제 서비스에 대한 기회와 위협을 도출하였다. 본 연구를 통해 간편 결제 시장 참여자가 자사의 서비스 역량을 확인할 수 있도록 하고, 서비스별로 간편 결제 시장에서 우위를 점할 수 있는 서비스 활성화 전략을 제안하고자 한다.
정보통신의 발달과 스마트 기기의 발전 및 보급 향상은 관광 형태의 변화를 야기하였고, 이후 스마트 관광이라는 개념이 등장하였다. 이에 스마트 관광 정책 및 설문에 관한 연구가 진행되고 있으나 애플리케이션 리뷰에 관한 연구는 미비한 편이다. 본 연구는 구글 플레이 스토어 내 스마트 관광 분야의 대표적인 애플리케이션인 트립어드바이저 애플리케이션 리뷰 데이터를 수집하여 LDA(Latent Dirichlet Allocation) 토픽 모델링을 통해 사용 용도와 사용자 만족을 파악하고자 한다. 분석 결과 4개의 토픽이 도출되었으며 2개의 토픽에서는 긍정적인 평가를 나머지 2개의 토픽에서는 부정적인 평가를 하고 있었다. 사용자들은 해당 애플리케이션의 숙박 및 관광 명소 추천 시스템에 만족하고 있음을 알 수 있었으며 검색 시 설정한 필터가 적용되지 않거나 업데이트 후 리뷰가 게시되지 않음에 불편을 겪고 있음을 알 수 있었다. 이에 다양한 추천 카테고리를 애플리케이션에 추가하여 사용자에게 다양한 경험을 제공하는 것이 만족도 향상에 도움이 될 것으로 기대된다. 또한 필터 기능을 포함한 애플리케이션 문제를 파악하여 애플리케이션 환경 점검과 해당 기능 오류 개선을 한다면 사용자 만족도를 향상시킬 수 있을 것으로 기대된다.
고객과 대중의 니즈를 파악하기 위한 감성분석의 중요성이 커지면서 최근 영어 텍스트를 대상으로 다양한 딥러닝 모델들이 소개되고 있다. 본 연구는 영어와 한국어의 언어적인 차이에 주목하여 딥러닝 모델을 한국어 상품평 텍스트의 감성분석에 적용할 때 부딪히게 되는 기본적인 이슈들에 대하여 실증적으로 살펴본다. 즉, 딥러닝 모델의 입력으로 사용되는 단어 벡터(word vector)를 형태소 수준에서 도출하고, 여러 형태소 벡터(morpheme vector) 도출 대안에 따라 감성분석의 정확도가 어떻게 달라지는지를 비정태적(non-static) CNN(Convolutional Neural Network) 모델을 사용하여 검증한다. 형태소 벡터 도출 대안은 CBOW(Continuous Bag-Of-Words)를 기본적으로 적용하고, 입력 데이터의 종류, 문장 분리와 맞춤법 및 띄어쓰기 교정, 품사 선택, 품사 태그 부착, 고려 형태소의 최소 빈도수 등과 같은 기준에 따라 달라진다. 형태소 벡터 도출 시, 문법 준수도가 낮더라도 감성분석 대상과 같은 도메인의 텍스트를 사용하고, 문장 분리 외에 맞춤법 및 띄어쓰기 전처리를 하며, 분석불능 범주를 포함한 모든 품사를 고려할 때 감성분석의 분류 정확도가 향상되는 결과를 얻었다. 동음이의어 비율이 높은 한국어 특성 때문에 고려한 품사 태그 부착 방안과 포함할 형태소에 대한 최소 빈도수 기준은 뚜렷한 영향이 없는 것으로 나타났다.
최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.