• Title/Summary/Keyword: golf navigation system

Search Result 4, Processing Time 0.017 seconds

Implementation of Golf Swing Accuracy Analysis System using Smart Sensor (스마트 센서를 활용한 골프 스윙 정확도 분석시스템 구현)

  • Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.200-205
    • /
    • 2017
  • Modern sports are developing into sports science that incorporates science and various analytical simulation systems for improving records are being developed, and they are helping to improve actual game records. Therefore golf which is one of various sports events, has been popularized among the hobbyists and the general public and there is an increasing demand for correcting the movement attitude of the person. In response to these demands, many systems have been developed to analyze and correct golf swing postures. The golf swing accuracy analysis system analyzes the moments that can not be seen with the naked eye and guides them to understand easily. It can improve the golf swing motion through immediate feedback due to the visual effect. Using the knowledge of golf swing motion collected from golf swing video, we improved reliability. In addition, it provides the ability to visually check and analyze your golf swing video, allowing you to analyze each segment based on various golf swing classification methods.

Robust Recognition of a Player Name in Golf Videos (골프 동영상에서의 강건한 선수명 인식)

  • Jung, Cheol-Kon;Kim, Joong-Kyu
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.659-662
    • /
    • 2008
  • In sports videos, text provides valuable information about the game such as scores and information about the players. This paper proposed a robust recognition method of player name in golf videos. In golf, most of users want to search the scenes which contain the play shots of favorite players. We use text information in golf videos for robust extraction of player information, By using OCR, we have obtained the text information, and then recognized the player information from player name DB. We can search the scenes of favorite players by using this player information. By conducting experiments on several golf videos, we demonstrate that our method achieves impressive performance with respect to the robustness.

  • PDF

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.