• Title/Summary/Keyword: gold and silver ore

Search Result 91, Processing Time 0.022 seconds

Gold-Silver Mineralizations in the Imgye District (임계지역(臨溪地域)의 금(金)-은(銀) 광화작용(鑛化作用))

  • Park, Hee-In;Hwang, Jeong;Huh, Soon-Do
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.379-395
    • /
    • 1992
  • The gold ore deposits of Nakcheon, Gongyeong and Dongmyeong mine in the Imgye district are E-W trending fissure filling veins emplaced in Precambrian Jungbongsan granite and sedimentary rocks of Cambrian Yangdeog group. The K-Ar age for vein alteration sericite and vein laced muscovite are 73 and 93 Ma, respectively. Vein structure and mineralogy indicate the three distinct depositional stages: I) basemetal sulfides and tin minerals, II) gold-basemeatl sulfides, III) gold-silver-basemetal sulfides. Major gold and silver ore minerals are electrum, native silver, pyrargyrite and argentite. Fluid inclusion data indicate that filling temperatures were from $350^{\circ}C$ to $190^{\circ}C$ through stage I, II and III. Salinities were in the range of 0.0~9.5 NaCl eq.wt.% and do not reveal any systematic trend. Intermittent boiling of ore fluid during stage I is indicated by fluid inclusions in quartz. Fluid pressure during stage I which is estimated from fluid inclusions showing boiling evidence range from 50 to 100 bars. Gold ore deposits of the Imgye district were formed under higher temperatures and lower sulfur fugacities compared with the Eunchi silver ore deposits about 8 Km apart from the Imgye district.

  • PDF

Gravity Separation Characteristic for the Gold.Silver Ores on the Philippine Mankayan District (필리핀 만카얀 지역 금.은 광석의 비중선별 특성)

  • Kim, Hyung-Seok;Chae, Soo-Chun;Kim, Jeong-Yun;Sohn, Jeong-Soo;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.383-395
    • /
    • 2008
  • To enhance the grade and recovery rate of the gold/silver ores which yield at Philippine Mankayan mine, we studied the characteristics which are the geologic and mineralogical features of gold and silver ore, the liberation by crushing and grinding, the separation by sieving and shaking table. Gold/silver ore is composed of the sulfide minerals like pyrite, sphalerite, galena; and the gangue minerals which is quartz, clay. Gold/silver element are mainly contained in a sulfide minerals like pyrite, sphalerite and galena. To increase the liberation rate of sulfide minerals containing gold/silver element, the gold/silver ore has to be grounded under $100{\mu}m$ very finely because the crystal size of sulfide minerals is distributed from $1{\mu}m$ to $100{\mu}m$. The liberation rate of gold/silver ore increases to 92% when the particle size ($d_{90}$) of ore is grounded below $100{\mu}m$ by jaw crusher $\to$ cone crusher $\to$ rod mill by steps. The grade and recovery of sulfide minerals could not be enhanced by sieving separation because those crystal size is distributed homogeneously below $100{\mu}m$. But, when we separated the sieved ore using shaking table, the gold and silver grade increased to 40 ppm and 140 ppm, respectively. Then the recovery rate of gold reach almost 100% but that of silver is no more that 50%.

Ore and Fluid Inclusions of the Tongyeong Gold-Silver Deposits (통영(統營) 금광상(金鑛床)의 광석(鑛石)과 유체포유물(流體包有物))

  • Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.16 no.4
    • /
    • pp.245-251
    • /
    • 1983
  • The Tongyeong gold-silver deposits is located in Chungmu City, the southern end of Korean peninsula. The ore deposits is epithermal gold-silver vein emplaced in late Cretaceous andesite, andesitic pyroclastics and quartz porphyry. Ore is composed of pyrite, chalcopyrite, sphalerite, galena, electrum, argentian tetrahedrite, Cu-Ag-sulfides, quartz and rhodochrosite. Filling temperature of fluid inclusions in quartz ranges from 134 to $223^{\circ}C$ and salinity ranges from 1.2 to 3.8 weight % equivalent to NaCl.

  • PDF

Mineralogy of gold-silver deposits in Chungcheong Province (충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究))

  • Choi, Seon Gyu;Park, No Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do (충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究))

  • Choi, Seon Gyu;Chi, Se Jung;Park, Sung Won
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

Gold and Silver Mineralization in the Dongweon Mine (동원광산의 금-은 광화작용)

  • Park, Hee-In;Park, Young-Rok
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1990
  • Ore deposits of Dongwon mine are composed of numerous gold and silver veins emplaced in sedimentary rocks of Cambrian Choseon Supergroup and granitoids of Cretaceous age. Ore veins of the mine can be divided into gold and silver veins on the base of vein structure, mineral assemblage and vein trends. Mutual relationships between gold and silver veins are uncertain. Gold veins are simple veins which are composed of base-metal sulfides, and electrum with quartz and ankerite. On the other hand, silver veins are complex veins which reveal three distinct stages of mineral deposition based on vein structure; stage I, deposition of small amounts of oxides and pyrite with quartz; stage II, deposition of base-metal sulfides, small amounts of Ag-bearing minerals, calcite and quartz; stage III, deposition of base metal sulfides, electrum, Ag-sulfosalts, native silver, carbonates and quartz. Homogenization temperature and salinity of fluid inclusion from quartz of gold vein are as follows; $229^{\circ}$ to $283^{\circ}C$, 4.7 to 6.4 wt.% equivalent NaCI. The ore mineralogy suggests that temperature(T) and sulfur fugacity($fs_2$) of the formation of the gold vein and stage III of silver vein are estimated as T ; $294^{\circ}$ to $318^{\circ}C$, $fs_2\;10^{-9.4}$ to $10^{-10.1}$ atm. and T; $240^{\circ}$ to $279^{\circ}C$, $fs_2;10^{-11.1}$ to $10^{-17.3}$ atm. respectively. Pressure condition during gold vein formation estimated from data of ore mineralogy and fluid inclusion range 500 to 750 bar.

  • PDF

Gold-Silver Mineralization of Taechang-Boryeon and Geumwang Mines in Northeastern Chungcheong Provinces (충청도(忠淸道) 동북부(東北部) 태창(泰昌)·보연(寶蓮), 금왕(金旺) 광산(鑛山)의 금은광화작용(金銀鑛化作用))

  • Choi, Seon Gyu;Park, No Young;Park, Sung Won
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.193-206
    • /
    • 1986
  • A number of auriferous veins occur in the Precambrian metamorphic terrain from Chungju to Mugeug district. These gold (-silver) deposits consist mainly of the fissure-filling quartz veins intruding the Precambrian gneiss or schist and Jurassic or Cretaceous granite. These gold (-silver) deposits can be 'divided into two mineralization epochs, (a) gold-rich veins related to Daebo igneous activity, and (b) gold-silver veins related to Bulgugsa igneous activity. These two groups of ore deposits with different generation can be characterized by the mode of occurrence of ore vein and the ore mineral associations. The auriferous quartz veins of Taechang and Boryeon mines associated with late Jurassic igneous activity are massive in character, and show the simple mineral assemblages and low Ag/Au ratio in the ores, representing a single mineralization system. The ore minerals are predominantly quartz containing minor or trace amonts of pyrrhotite, sphalerite, galena, pyrite, chalcopyrite and electrum. Electrum is closely associated with pyrrhotite and has chemical compositions from 61.4 to 78.5 atomic % Au. Fluid inclusion data suggest that ore minerals were deposited at temperatures between 238 and $390^{\circ}C$ from $CO_2$-rich fluids. The gold and/or silver-bearing quartz veins of Geumwang mine related to middle Cretaceous igneous activity are characterized by the multistage history, diverse mineral assemblages with high Ag/Au ratio in the ores. The ores of Geumwang mine have two contrasting mineral assemblages (1) pyrite+galena+sphalerite+arsenopyrite+electrum+argentite, representing the higher gold mineralization, and (2) pyrite+chalcopyrite+ galena +sphalerite+ arsenopyrite+silver sulfosalts+ electrum+ native silver+argentite, representing the higher silver mineralization. Electrum is closely associated with pyrite and has chemical compositions from 11.2 to 49.9 atomic % Au. The depositional environment during the higher gold mineralization can be estimated as the range of both temperature and sulfur fugacity, T= $200{\sim}300^{\circ}C$, log f ($S_2$) = $10^{-10}{\sim}10^{-15}$. The higher silver mineralization may be interpreted to have formed a range of falling temperature ($150{\sim}200^{\circ}C$) and low sulfur fugacity($10^{-10}{\sim}10^{-15}$). These temperature data are consistent with homogenization temperatures of fluId inclusions in quartz. Thus, the gold veins related to the Daebo igneous activity may be formed by the environment of higher temperature and pressure than the gold-silver veins associated with the Bulgugsa igneous activity.

  • PDF

Gold and Silver Mineralization in the Yonghwa Mine (용화광산(龍化鑛山)의 금은광화작용(金銀鑛化作用))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.107-129
    • /
    • 1991
  • The Yonghwa gold-silver deposits are emplaced along $N15^{\circ}{\sim}25^{\circ}W$ trending fissures in middle Cretaceous porphyritic granite or Precambrian Sobaegsan gneiss complex. The results of paragenetic studies suggest that vein filling can be subdivided into four identifiable stages; state I: the main sulfide stage, characterized by base-metal sulfide minerals, iron oxides and minor electrum, stage II: electrum stage, stage III: electrum and silver-bearing sulfosalts stage, stage IV: post ore stage of carbonates and quartz. The ore mineralogy suggests that depositional temperature of the formation of the gold and silver minerals are estimated as 200 to $250^{\circ}C$ and 140 to $180^{\circ}C$, respectively. Sulfur fugacity of the formation of the gold and silver minerals are estimated as $10^{-14.0}$ to $10^{-12.2}$ atm and $10^{-18.5}$ to $10^{-17.2}$ atm, respectively. A consideration of the pressure regime during ore deposition bases on the fluid inclusion evidence of boiling suggests lithostatic pressure of less than 180 bars. This range of pressure indicate that vein system lay at depth of 700m below the surface at the time during mineralization. Salinities of ore-bearing fluids range from 0.4 to 6.9 wt.% equivalent NaCl. The sulfur and carbon isotopic data reveal that these elements were probably derived from a deep-seated source. The ${\delta}^{18}O$ of the hydrothermal fluid was determined from ${\delta}^{18}O$ values of quartz and calcite. Oxygen and hydrogen isotopic studies reveal that meteoric water dominate over ore-bearing fluid.

  • PDF

Ore Minerals and the Physicochemical Environments of the Inseong Gold-Silver Deposits, Republic of Korea (인성(仁成) 금(金)·은(銀) 광상(鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과, 물리화학적(物理化學的) 생성환경(生成環境))

  • Lee, Hyun Koo;Moon, Hi-soo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.237-252
    • /
    • 1989
  • The Inseong gold-silver mine is located 3Km northwest of Suanbo, Choongcheongbugdo, Republic of Korea. The mine occurs in the shear zone formed by tension fractures within the Hwanggangri Formation of the Ogcheon metamorphic belt. Ore minerals found in the gold-silver bearing hydrothermal quartz vein composed mainly of pyrite, arsenopyrite, sphalerite, galena and minor amount of chalcopyrite, pyrrhotite, stannite, bismuthininte, native bismuth, chalcocite, electrum and tellurian canfieldite(?). The gangue minerals are quartz, calcite, chlorite and rhodochrocite. Wallrock alterations such as chloritization, silicitication, pyritization, carbonitization and sericitization can be observed in or around the quartz vein. According to the paragenetic sequence, quartz vein structure and mineral assemnlages, three different stages of ore formation can be recognized. The physico-chemical environment of ore formation in this deposit shows slight variation from stage to stage, but the condition of main ore deposition can be summarized as follows. Fluid inclusion, S-istope geothermometry and geothermometry based on mineral chemistry by use of arsenopyrite and chlorite show the ore was formed at temperature between 399 and $210^{\circ}C$ from fluids with salinities of 3.3-5.8 wt.% equivalent NaCl. It indicates that pressure during the mineralization is less than 0.6 Kb corresponding to a depth not greater than 1Km. S-isotope data suggests that thermal fluid may have magmatic origin wit some degree of mixing with meteoric water. In coclusion, the Inseong gold-silver deposit was formed at shallow depth and relatively high-temperature possibly with steep geothermal gradient under xenothermal condition.

  • PDF

Occurrence of Electrum from the Namseong Gold Mine (남성(南星) 금광산산(金鑛山産) 에렉트럼의 산상(産狀))

  • Lee, Hyun Koo;Kim, Sang Jung;Choi, Seon Gyu
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.223-234
    • /
    • 1987
  • This paper describes the mode of occurrence and mineralogical properties of electrum from the Namseong Gold-Silver deposits, for the purpose of obtaining data on the characteristics of the ore deposits and the behavior of gold and silver during the mineralization. The gangue minerals are quartz, calcite, fluorite. Ore minerals are mainly composed of pyrite, sphalerite, chalcopyrite and galena with minor amount of argentite, electrum, pyrargyrite, native silver and unidenfied mineral(Cu-Fe-Ag-S series). Three stage of mineralization recognized are, from early to later, (I) pyrite-electrum stage (II) sphalerite-chalcopyrite-galena-argentite-electrum stage (III) sulfosalts stage. The filling temperature of fluid inclusions in quartz ranges from $225^{\circ}$ to $335^{\circ}C$. The value of sulfur fugacity estimated by means of electrum-tarnish method ranges from $10^{-11.5}$ to $10^{-14}$ atm. The compositional heterogeneity within a single grain with respect to gold concentration is common in the Namseong electrums Chemical composition of electrum ranges generally between 25~45 atom% Au. Its gold content decreases in late stages of mineralization.

  • PDF