• 제목/요약/키워드: gob-side entry

검색결과 7건 처리시간 0.018초

Cooperative bearing behaviors of roadside support and surrounding rocks along gob-side

  • Tan, Yunliang;Ma, Qing;Zhao, Zenghui;Gu, Qingheng;Fan, Deyuan;Song, Shilin;Huang, Dongmei
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.439-448
    • /
    • 2019
  • The bearing capacity of roadside support is the key problem in gob-side entry retaining technology. To study the cooperative bearing characteristics of the roof-roadside support-floor along the gob-side entry retaining, a mechanical model of the composite structure of the roof-roadside support-floor was first established. A method for determining the structural parameters of gob-side entry retaining was then proposed. Based on this model, adaptability analysis of roadside support was carried out. The results showed that the reasonable width of the gob-side entry roadway was inversely proportional to the mining height, and directly proportional to the bearing strength of the roof and floor. And the reasonable width of the "flexible-hard" roadside support was directly proportional to its own strength, and inversely proportional to the width of the gob-side entry retaining. When determining the position and size of the roadside support along the gob-side entry retaining, the surrounding rock environment should be fully considered. Measured results from case study also show the rationality of the model and calculation method.

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.

Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof

  • Liu, X.S.;Ning, J.G.;Tan, Y.L.;Xu, Q.;Fan, D.Y.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1173-1182
    • /
    • 2018
  • The coal wall, gob-side backfill, and gangues in goaf, constitute the support system for Gob-side entry retaining (GER) in coal mines. Reasonably allocating and utilizing their bearing capacities are key scientific and technical issues for the safety and economic benefits of the GER technology. At first, a mechanical model of GER was established and a governing equation for coordinated bearing of the coal-backfill-gangue support system was derived to reveal the coordinated bearing mechanism. Then, considering the bearing characteristics of the coal wall, gob-side backfill and gangues in goaf, their quantitative design methods were proposed, respectively. Next, taking the No. 2201 haulage roadway serving the No. 7 coal seam in Jiangjiawan Mine, China, as an example, the design calculations showed that the strains of both the coal wall and gob-side backfill were larger than their allowable strains and the rotational angle of the lateral main roof was larger than its allowable rotational angle. Finally, flexible-rigid composite supporting technology and roof cutting technology were designed and used. In situ investigations showed that the deformation and failure of surrounding rocks were well controlled and both the coal wall and gob-side backfill remained stable. Taking the coal wall, gob-side backfill and gangues in goaf as a whole system, this research takes full consideration of their bearing properties and provides a quantitative basis for design of the support system.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Ground response of a gob-side gateroad suffering mining-induced stress in an extra thick coal seam

  • He, Fulian;Gao, Sheng;Zhang, Guangchao;Jiang, Bangyou
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents an investigation of the ground response of a gob-side gateroad suffering mining stress induced by a 21 m-thick coal seam extraction. A field observation, including entry convergence and stress changes monitoring, was first conducted in the tailgate 8209. The observation results of entry convergence showed that, during the adjacent panel 8210 retreating period, the deformation of the gob-side gateroad experienced a continuous increase stage, subsequently, an accelerating increase stage, and finally, a slow increase stage. However, strong ground response, including roof bending deflection, rib extrusion and floor heave, occurred during the current panel 8209 retreating period, and the maximum floor heave reached 1530 mm. The stress changes within coal mass of the two ribs demonstrated that the gateroad was always located in the stress concentrated area, which responsible for the strong response of the tailgate 8209. Subsequently, a hydraulic fracture technique was proposed to pre-fracture the two hard roofs above the tailgate 8209, thus decreasing the induced disturbance on the tailgate. The validity of the above roof treatment was verified via field application. The finding of this study could be a reference for understanding the stability control of the gob-side gateroad in extra thick coal seams mining.

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.