• Title/Summary/Keyword: goal detection

Search Result 292, Processing Time 0.028 seconds

A Strategy for Integrated Target Recognition and High Quality Compression (목표물 탐지를 고려한 통합 이미지 압축에 관한 연구)

  • 남진우
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.257-260
    • /
    • 2000
  • In modern battlefield situation, radar and infrared sensors may be located on aircraft having limited computational resources available for real-time computer processing. Hence sensor images are transmitted typically to central stations for processing and automatic target recognition/detection. Owing to the limited bandwidth channels that are typically available between the aircraft and processing stations, images are compressed prior to transmission to facilitate rapid transfer. In this paper we examine the problem of compressing sensor data for transmission, given that target recognition is the end goal. Performance result shows that the front-end target recognition system achieves a relatively high level of performance as well as a high compression ratio.

  • PDF

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Study on Design of Two-Axis Image Stabilization Controller through Drone Flight Test Data Standardization

  • Jeongwon, Kim;Gyuchan, Lee;Dong-gi, Kwag
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.470-477
    • /
    • 2022
  • EOTS for drones is showing another aspect of market expansion in detection and recognition areas previously occupied by artificial satellites. The two-axis EOTS for drones controls the vibration or disturbance caused by the drone during the mission so that EOTS can accurately recognize the goal. Vibration generated by drones is transmitted to EOTS. Therefore, it is essential to develop a stabilization controller that attenuates vibrations transmitted from drones so that EOTS can maintain the viewing angle. Therefore, it is necessary to standardize drone disturbance and secure the performance of EOTS disturbance attenuation controller optimized for disturbance level through this. In this paper, a method of standardizing drone disturbance applied to EOTS is studied, through which EOTS controller simulation is performed and stabilization controller shape is selected and designed.

Phishing Email Detection Using Machine Learning Techniques

  • Alammar, Meaad;Badawi, Maria Altaib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.277-283
    • /
    • 2022
  • Email phishing has become very prevalent especially now that most of our dealings have become technical. The victim receives a message that looks as if it was sent from a known party and the attack is carried out through a fake cookie that includes a phishing program or through links connected to fake websites, in both cases the goal is to install malicious software on the user's device or direct him to a fake website. Today it is difficult to deploy robust cybersecurity solutions without relying heavily on machine learning algorithms. This research seeks to detect phishing emails using high-accuracy machine learning techniques. using the WEKA tool with data preprocessing we create a proposed methodology to detect emails phishing. outperformed random forest algorithm on Naïve Bayes algorithms by accuracy of 99.03 %.

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

Exonic copy number variations in rare genetic disorders

  • Man Jin Kim
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2023
  • Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.5
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

Metrics for Code Quality Check in SEED_mode.c

  • Jin-Kuen Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.184-191
    • /
    • 2024
  • The focus of this paper is secure code development and maintenance. When it comes to safe code, it is most important to consider code readability and maintainability. This is because complex code has a code smell, that is, a structural problem that complicates code understanding and modification. In this paper, the goal is to improve code quality by detecting and removing smells existing in code. We target the encryption and decryption code SEED.c and evaluate the quality level of the code using several metrics such as lines of code (LOC), number of methods (NOM), number of attributes (NOA), cyclo, and maximum nesting level. We improved the quality of SEED.c through systematic detection and refactoring of code smells. Studies have shown that refactoring processes such as splitting long methods, modularizing large classes, reducing redundant code, and simplifying long parameter lists improve code quality. Through this study, we found that encryption code requires refactoring measures to maintain code security.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF