• Title/Summary/Keyword: gneiss complex

Search Result 104, Processing Time 0.027 seconds

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

Petrological Study on the Ultramafic Rocks in Choongnam Area (충남지역 초염기성암체의 암석학적 연구)

  • Woo, Young-Kyun;Suh, Man-Cheol
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.323-336
    • /
    • 2000
  • Ultramafic rocks in Choongnam area are mainly serpenitinites which are parent rock of talc and asbestos ore deposits. About 10 $^{\circ}$ NNE-trending parallel serpentinites masses occur as discontineous isolated lenticular intrusive bodies in Precambrian gneiss complex between Hongseong-Kwangcheon line and Onyang-Cheongyang line. The sizes of serpentinites vary from several centimeters to 1 kilometer in width and from several meters to 5 kilometers in length. The serpentinites show high SiO$_2$(39.99wt.% in average), MgO(38.46wt % in average), Cr(>1011ppm), Ni(>1660ppm), and Co(>80ppm). Most serpentinites contain serpentine more than 50%. Some serpentines contain original minerals such as olivine, pyroxene and chromite. Also, serpentinites body may contain a little serpentinized peridotite, and some talc and asbestos ore deposits. The original rocks of the serpentinites interpreted as Alpine type ultramafic rocks, and dunite and/or harzburgite which were originated from slightly depleted upper mantle(30${\sim}$40km deep), and emplaced in the crust through the large fault zones. It seems that main serpentinization from the original rocks was occurred during greenschist and/or amphibolite facies regional metamorphism in Choongnam area.

  • PDF

Petrological characteristics of the Yeongdeok granite (영덕화강암의 암석학적 특징)

  • Woo, Hyeon-Dong;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.31-43
    • /
    • 2014
  • The Yeongdeok granite emplaced in the eastern Yeongyang subbasin is typically a medium- to coarse-grained massive biotite granite. It intruded into Precambrian schist & gneiss complex and is unconformably overlain by Cretaceous sedimentary rocks. In this study, we attempt to investigate the magma type which formed Yeongdeok granite and estimate the emplacement depth using Al-in-hornblende geobarometer to mineral composition. According to the magma fractionation, $TiO_2$, $Al_2O_3$, $Fe_2O_3{^*}$, FeO, $Fe_2O_3$, MnO, MgO, CaO, $Na_2O$ and $P_2O_5$ show positive trend but $K_2O$ indicate negative trend with $SiO_2$ contents. Those are identified as calc-alkaline series in AFM diagram and show the chemical characteristics of the I-type magma through the oxidation tendency of the iron ion and the portion of the alkaline composition. When calculated using the equation of Hollister et al. (1987), the emplacement depths of the Yeongdeok granite range from 8.98 to 17.19 km and average depth was estimated 13.03 km approximately.

Fluid Inclusion Studies of the Fluorite Deposits in Korea (우리나라 형석광상(螢石鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Park, Hee In
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 1976
  • The flourite in Hwacheon, Hwanggangri and Keumsan district are major fluorite producing areas in Korea. The fluorite deposits of Hwacheon district are wholly fissure filling hydrothermal veins embedded in Precambrian gneiss and schists and Jurassic granites. Also some fluorite deposits are emplaced in felsite whose age is unknown. Emplacement of most fluorite veins of the district are controlled by EW fracture system. Fluorites are generally accompanied to chalcedonic quartz and also kaolinite, montmorillonite, dickite and calcite in parts. Vertical and lateral mineral zonings are not distinct. The fluorite deposits in the Hwanggangri district are wholly embedded in limestone and other calcareous sediments of Paleozoic Yeongweol Group. Most of the fluorite deposits belong to one of two categories which are steeply. dipping veins and gently dipping replacement deposits adjacent to Late Cretaceous(83-90mys) granite bodies. The strikes of fluorite veins of Hwanggangri district mostly occupy the fractures of $N30^{\circ}-40^{\circ}E$ and $N30^{\circ}-40^{\circ}W$ system. Fluorites are accompanied to calcite, milky quartz, chalcedonic quartz, and also montmorillonite, kaolinite in parts. But in some deposits, scheelite, various sulfide minerals and barite are accompanied. Emplacement of fluorite deposits are largely controlled by lithology and structures of this district. In some deposits fluorite veins gradate to scheelite veins and also telescoping of the mineral zones are found in this district. In the Keumsan district, fissure-filled fluorite veins and replacement deposits are mostly emplaced in limestone of Paleozoic Yeongweol Group, late Cretaceous quartz-porphyry, granite and sandstone. Some deposits are emplaced in Precambrian metasediments. Mineralogy and other characteristics of the deposits in this district is similar to those of Hwanggangri district. Fluid inclusion studies reveal the difference of salinities, $CO_2$ contents of ore fluid and temperatures during fluorite mineral deposition in the these districts. In Hwacheon district, ore-fluids were comparatively dilute brine and low $CO_2$ content. Filling temperatures ranges $104^{\circ}C$ to $170^{\circ}C$. In the Chuncheonshinpo mine, most deeply exploited one in this district, salinitles range 0.5-2. 2wt. % NaCl and filling temperatures range from $116^{\circ}C$ to $143^{\circ}C$. In the Hwanggangri district, ore fluids were complex and filling temperature ranges very widly. In the contact metasomatic fluorite deposits, ore fluid were NaCl rich brines with moderate $CO_2$ content and filling temperatures range from $285^{\circ}C$ to above $360^{\circ}C$. Fluids inclusions in tungsten and sulfide minerals bearing fluorite veins show high $CO_2$ content up to 31wt. %. Filling temperature ranges from $101^{\circ}C$ to $310^{\circ}C$. Fluids inclusions In mainly fluorite bearing veins were more dilute brine and low $CO_2$ contents. Filling temperatures range from $95^{\circ}C$ to $312^{\circ}C$. Filling temperature of fluid inclusions of Keumsan district are between $95^{\circ}C$ and $237^{\circ}C$. Data gathered from geologic, mineralogic and fluid inclusion studies reveal that fluorite mineralization in H wacheon district proceeded at low temperature with dilute brine and low $CO_2$ content. In Hwangganri district, fluorite mineralization proceeded by several pulse of chemically distinct ore fluids and formed the mineralogically different type of deposits around cooling granite pluton which emplaced comparatively shallow depth.

  • PDF

Assessment of Cutting Performance of a TBM Disc Cutter for Anisotropic Rock by Linear Cutting Test (선형절삭시험에 의한 이방성 암석에 대한 TBM 디스크커터 절삭 성능 평가 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo;Chang, Soo-Ho;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.508-517
    • /
    • 2011
  • The linear cutting test is the most reliable and accurate approach to measuring cutting forces and cutting efficiency using full-size disc cutter in various rock types. The result of linear cutting tests can be used to obtain the key parameters of cutter-head design (i.e. optimum cutter spacing, cutter forces). In Korea, LCM (Linear Cutting Machine) tests have been performed for typical Korean rock types, but these studies focused on the isotropic rocktypes. For prediction of TBM (Tunnel Boring Machine) performances in complex geological conditions including a bedded and schistose rockmass, it is important to consider the effects of anisotropy of rockmass on cutting performances and cutting efficiency. This study discusses a series of LCM tests that were performed for Asan Gneiss having two types of anisotropy angles to assess the effect of the anisotropy angle on rock-cutting performances of TBM. The result shows that the rock-cutting performances and optimum cutting conditions are affected by anisotropy angle and the effect of anisotropy on rock strength should be considered in a prediction of the cutting performances and efficiency of TBM.

Geochemistry of the Chuncheon amphibolite and its origin: (1) major elements (춘천 각섬암의 지구화학과 기원:(1) 주성분원소)

  • 권성택;조문섭;전은영;이승렬;이진한
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1995
  • We report major element chemistry of the Chuncheon amphibolite in the Precambrian Kyonggi massif and discuss its origin. On the basis of areal distribution and chemical difference, the Chuncheon amphibolite can be divided into the Gubongsan arnphibolite in the Gubongsan Group east of Chuncheon city and the Sangguli amphibolite in the Yongduri gneiss complex occurring to the southeast of the Gubongsan Group. Overall major element characteristics of the Chuncheon amphibolite indicate an igneous precursor, although it shows concordant relationship with metasedimentary rocks in many cases. The parental rock of the amphibolite has tholeiitic composition with 45-53wt% $SiO_2$. The Sangguli amphibolite has lower MgO than the Gubongsan one. The difference in $TiO_2$/P_2O_5 ratio between the two amphibolites suggests that they are not genetically related. In MgO variation diagrams, $Na_2O$, $Fe_2O_3$ and $Al_2O_3$ show scattered pattern, while MgO has positive correlation with CaO and negative one with $SiO_2$, $TiO_2$, $P-2O_5$ and $K_2O$. These variations can be interpreted as the result of differentiation of basaltic magma with fractionation of olivine, pyroxene, and plagioclase. Tectonic discrimination using major elements generally suggest withinplate environment for the Chuncheon amphibolite which is similar to that of the amphibolite in the Ogcheon belt.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Petrochemistry of Mesozoic Granites in Wolchulsan Area (월출산지역에 분포하는 중생대 화강암류에 대한 암석화학적 연구)

  • Kim, Cheong-Bin;Yoon, Chung-Han;Kim, Jeong-Taek;Park, Jay-Bong;Kang, Sang-Won;Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.375-385
    • /
    • 1994
  • The studied area is composed of Precambrian gneiss complex, middle Jurassic biotite granite, late Cretaceour sediments, volcanics and pink feldspar granite. Characteristic minerals of the biotite granite is plagioclase and hornblende whereas the pink feldspar granite is pink feldspar (perthite) and quartz. Plagioclase compositions of the biotite granite and the pink feldspar granite are oligoclase to calcic andesine ($An_{18-44}$) and sodic albite ($An_{0.5-5.0}$), respectively. In the variation diagrams of the Harker and normative Q-Or-Pl diagram, the biotite granite belongs to the category from granodiorite to granite, the pink feldspar granite from nomal to late granite. The values of D.I. L.I. and alkalinity of the pink feldspar granite are higher than those of the biotite granite. While CaO is enriched in the biotite granite, $K_2O$ is enriched in the pink feldspar granite. The ratio of $K_2O/Na_2O$ which indicates the relative ratio of alkali is 1.06 in the pink feldspar granite, and 0.86 in the biotite granite. In A-M-F and N-C-K diagrams both these granites are plotted in peraluminus granite ($Al_2O_3$>$Na_2O+K_2O+CaO$) region, assigned to calc alkaline series and alkaline series respectively. Put into the form of A-C-F diagram, the biotite granite falls under I-type, and the pink feldspar granite S-type. On the base of whole rock ratios of $Fe^{+3}/Fe^{+2}+Fe^{+3}$ and $^{87}Sr/^{86}Sr$ for the granites in studied area, the biotite granite indicates ilmenite series (0.26) and S-type and/or contaminated I-type ($0.72020{\pm}0.00050$), the pink feldspar granite magnetite series (0.44) and I-type ($0.70826{\pm}0.00020$).

  • PDF

REE Mineralization of Quy Hop Area in Nghe An Province, Northern Vietnam (베트남 북부 네안성 뀌홉지역 희토류 광화작용)

  • Lee, Jae-Ho;Jin, Kwang-Min;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.193-213
    • /
    • 2018
  • Soil geochemical exploration to check anomalies related to mineralization was carried out targeting around Quy Hop area within Nghe An province, Northern Vietnam. The interval of sampling are horizontal 250 m with 13 line and longitudinal 300 m with 25 line, resulting in 325 soil samples. Based on the result of soil geochemical exploration, the pitting survey was carried out targeting the grid point with high TREO content, resulting in 73 soil samples within 8 pits. The geology of the survey area are consisted of Ban Chieng biotite granite complex intruding Bu Khang formation comprising of schist, gneiss and limestone. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. By ICP-MS result of soil samples, total REE oxide content of background amount is about 1.4 times of crustal abundance, depleting the light rare earth (about 0.2 times) and enriching the heavy rare earth (about 1.5 times). By ICP-MS result of pit soil samples, we identified TREO more than 1,000 ppm in 6 pits. It may be considered that REE ore bodies may develop in NE-SW direction, compared with the geochemical results of Quy Chau area.