• Title/Summary/Keyword: glycosidase

Search Result 104, Processing Time 0.024 seconds

Development of Fecal Microbial Enzyme Mix for Mutagenicity Assay of Natural Products

  • Yeo, Hee-Kyung;Hyun, Yang-Jin;Jang, Se-Eun;Han, Myung-Joo;Lee, Yong-Sup;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.838-848
    • /
    • 2012
  • Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.

A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats

  • Kim, Kyung-Ah;Yoo, Hye Hyun;Gu, Wan;Yu, Dae-Hyung;Jin, Ming Ji;Choi, Hae-Lim;Yuan, Kathy;Guerin-Deremaux, Laetitia;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.183-187
    • /
    • 2015
  • Background: Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. Methods: Male Sprague-Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography-tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. Results: When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration ($C_{max}$) and area under the plasma concentration-time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. Conclusion: These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • Na, Byung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-223
    • /
    • 2000
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

  • PDF

Antiviral activity of methanol extract from Rhus chinensis gall (오배자 추출물의 항바이러스 활성)

  • Lee, Doseung;Min, TaeSun;Lee, Dong-Sun
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.379-382
    • /
    • 2018
  • Trafficking process of viral glycoprotein to cell surface results in the syncytium formation when baby hamster kidney (BHK) cells was infected by Newcastle disease virus (NDV). Rhus chinensis gall, well-known as a medicinal plant, inhibited not only syncytium formation, but also trafficking of glycoprotein, hemagglutinin-neuramidase (HN) to the cell-surface. Modification of viral glycoprotein is processed within the endoplasmic reticulum and golgi body during trafficking into surface. R. chinensis gall extracts showed the strong inhibitory activities ($IC_{50}$ $12.5{\mu}g/mL$) against ${\alpha}-glucosidase$, when compared with the ${\beta}-glucosidase$. And this inhibitory activities is increased by the samples in a dose-depedent pattern. These data showed that the extracts of R. chinensis gall inhibited the cell-surface expression of NDV-hemagglutinin-neuramidase glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White (난백(Egg White)에서 추출한 리소좀 추출물(LOE)의 미백 효능 및 피부장벽에 관한 연구)

  • Choi, Da Hee;Jeon, Gyeongchan;Yoon, Jihee;Min, Jiho;Park, Si Jun;Kim, Jung Su;Hwang, Ee Taek;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-397
    • /
    • 2019
  • Lysosomes are cellular organelles involved in energy metabolism and intracellular digestion in eukaryotic cells, including protease, nuclease, glycosidase, lipase, and phosphatase. Our previous studies have confirmed that egg white lysosomes had melanin decolorization and reduction activity. However, there have been few studies on skin barrier and skin regeneration as well as inhibition of melanin production by egg white lysosomes on B16F10 melanocyte cell line. In this study, we attempted to identify the effect of lysosome-related organelle extract (LOE) extracted from egg white on the melanin content change and skin barrier enhancement in cells. First, cytotoxicity evaluation was performed on B16F10 melanocyte cell line to confirm the whitening efficacy of LOE. Cytotoxicity by LOE was not observed at 20 mg/mL concentration, but cytotoxicity was observed at 40 mg/mL, and the maximum concentration value was set to 20 mg/mL in all subsequent experiments. LOE samples of 5, 10, 20 mg/mL inhibited melanin production by 61.5 ± 4.0%, 61.4 ± 7.3%, 58.3 ± 8.3%, respectivly, compared to α-MSH, a negative control in melanin contents assay. MITF mRNA expression was reduced by about 39.7 ± 3.2% compared to the α-MSH treatment group. TEER assay using HaCaT showed that LOE increased TEER resistance in a dose-dependent manner, indicating that LOE is involved in strengthening the skin barrier. LOE also increased the TEER resistance under TNF-α treatment. Skin barrier was normally restored by LOE even under the condition of inflammation. LOE had a positive effect on cell division and cell migration promotion, confirmed by the observing the effect of promoting cell migration by LOE through cell migration assay. Taken together, we expect that LOE can be developed as a cosmetic material to enhance has effects on skin regeneration and skin barrier strengthening as well as whitening function if enzyme stabilization and formulation technology are combined.

The analysis of physical features and affective words on facial types of Korean females in twenties (얼굴의 물리적 특징 분석 및 얼굴 관련 감성 어휘 분석 - 20대 한국인 여성 얼굴을 대상으로 -)

  • 박수진;한재현;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • This study was performed to analyze the physical attributes of the faces and affective words on the fares. For analyzing physical attributes inside of a face, 36 facial features were selected and almost of them were the lengths or distance values. For analyzing facial contour 14 points were selected and the lengths from nose-end to them were measured. The values of these features except ratio values normalized by facial vortical length or facial horizontal length because the face size of each person is different. The principal component analysis (PCA) was performed and four major factors were extracted: 'facial contour' component, 'vortical length of eye' component, 'facial width' component, 'eyebrow region' component. We supposed the five-dimensional imaginary space of faces using factor scores of PCA, and selected representative faces evenly in this space. On the other hand, the affective words on faces were collected from magazines and through surveys. The factor analysis and multidimensional scaling method were performed and two orthogonal dimensions for the affections on faces were suggested: babyish-mature and sharp-soft.

  • PDF

Improvement of Transglycosylation Efficiency using a Glycosynthase Mutant derived from Thermoplasma acidophilum ${\alpha}$-Glucosidase (Thermoplasma acidophilum 유래 ${\alpha}$-glucosidase로 부터 생산된 glycosynthase 돌연변이 단백질의 개선된 당전이 효율)

  • Hwang, Sung-Min;Seo, Seong-Hwa;Park, In-Myoung;Choi, Kyoung-Hwa;Kim, Do-Man;Cha, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • Glycosynthase is an active site nucleophile mutant enzyme, prepared from glycosidase, which is capable of synthesizing oligosaccharide derivatives without the hydrolysis of the product. Thermoacidophilic ${\alpha}$-glucosidase of Thermoplasma acidophilum (AglA) exhibits a transglycosylating activity yielding various glycosides. AglA was converted to glycosynthase by the substitution of the catalytic nucleophile Asp-408 residue into non-nucleophile glycine in order to increase its ability to synthesize various glycosides by transglycosylation. The glycosynthase mutant was purified by Ni-NTA chromatography and its glycoside-synthesizing activity was measured by using an external nucleophile, sodium formate buffer, providing maltose as a donor and p-nitrophenyl-${\alpha}$-D-glucopyranoside ($pNP{\alpha}G$) as an acceptor, respectively. In addition, $pNP{\alpha}G$ was examined for its feasibility to act as both a donor and an acceptor, and products were compared with those of the wildtype enzyme. The mutant enzyme was found to catalyze the formation of a specific product from $pNP{\alpha}G$ with a yield of 42.5% without further hydrolysis, while the wild-type enzyme produced two $pNP{\alpha}G$ products at low yields. The results demonstrate the possibility of satisfactory yields for the reactions in the presence of small amounts of acceptor, and demonstrate that the high activity of the mutant, at pHs below neutrality, was applicable in the transfer of glucose from the natural donor.

Characterization of Recombinant Bovine Sperm Hyaluronidase and Identification of an Important Asn-X-Ser/Thr Motif for Its Activity

  • Park, Chaeri;Kim, Young-Hyun;Lee, Sang-Rae;Park, Soojin;Jung, Yena;Lee, Youngjeon;Kim, Ji-Su;Eom, Taekil;Kim, Ju-Sung;Lee, Dong-Mok;Song, Bong-Suk;Sim, Bo-Woong;Kim, Sun-Uk;Chang, Kyu-Tae;Kim, Ekyune
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1547-1553
    • /
    • 2018
  • Hyaluronidases are a family of enzymes that catalyse the breakdown of hyaluronic acid, which is abundant in the extracellular matrix and cumulus oocyte complex. To investigate the activity of recombinant bovine sperm hyaluronidase 1 (SPAM1) and determine the effect of the Asn-X-Ser/Thr motif on its activity, the bovine SPAM1 open reading frame was cloned into the mammalian expression vector pCXN2 and then transfected to the HEK293 cell line. Expression of recombinant bovine hyaluronidase was estimated using a hyaluronidase activity assay with gel electrophoresis. Recombinant hyaluronidase could resolve highly polymeric hyaluronic acid and also caused dispersal of the cumulus cell layer. Comparative analysis with respect to enzyme activity was carried out for the glycosylated and deglycosylated bovine sperm hyaluronidase by N-glycosidase F treatment. Finally, mutagenesis analysis revealed that among the five potential N-linked glycosylation sites, only three contributed to significant inhibition of hyaluronic activity. Recombinant bovine SPAM1 has hyaluronan degradation and cumulus oocyte complex dispersion ability, and the N-linked oligosaccharides are important for enzyme activity, providing a foundation for the commercialization of hyaluronidase.

Clinical and molecular biological aspect of the hyaluronidases: basis and clinical overview for oriental medical application

  • Kim, Cheorl-Ho;Lee, Dong-Gyu;Jang, Jun-Hyouk;Kim, Jong-De;Nam, Kyung-Soo;Kim, Jeong-Joong;Park, Jong-Kun;Choo, Young-Kug;Kim, Hyung-Min;Lee, Young-Choon
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2000
  • Components of extracellular matrix and the matrix-degrading enzymes are some of the key regulators of tumor metastasis and angiogenesis. Hyaluronic acid (HA), a matrix glycosaminoglycan, is known to promote tumor adhesion and migration, and its small fragments are angiogenic. Until now, we have compared levels of hyaluronidase, an enzyme that degrade HA, in normal adult prostate, benign prostate hyperplasia and prostate cancer tissues and in conditioned media from epithelial explant cultures, using a substrate (HA)-gel assay and ELISA-like assay (Kim et al., unpublished results). The present review described an overall characterization of hyaluronidases and its application to human diseases. The hyaluronidases are a family of enzymes that have, until recently, deed thorough explication. The substrate for these enzymes, hyaluronan, is becoming increasingly important, recognized now as a major participant in basic processes such as cell motility, wound healing, embryogenesis, and implicated in cancer progression. And in those lower life forms that torment human beings, hyaluronidase is associated with mechanisms of entry and spread, e.g. as a virulence factor for bacteria, for tissue dissection in gas gangrene, as a means of treponema spread in syphilis, and for penetration of skin and gut by nematode parasites. Hyaluronidase also comprises a component of the venom of a wide variety of organisms, including bees, wasps, hornets, spiders, scorpions, sh, snakes and lizards. Of particular interest is the homology between some of these venom hyaluronidases and the enzyme found in the plasma membrane of mammalian spermatozoa, attesting to the ancient nature of the conserved sequence, a 36% identity in a 300 amino acid stretch of the enzyme protein. Clearly, hyaluronidase is of biological interest, being involved in the pathophysiology of so many important' human disorders. Greater effort should be made in studying this family of enzymes that have, until recently, been overlooked. Also, oriental medical application of the hyaluronidase will be discussed with respect to inhibition and suppression of inflammation and malignacy.

  • PDF

Evaluation of General Toxicity and Genotoxicity of the Silkworm Extract Powder

  • Heo, Hyun-Suk;Choi, Jae-Hun;Oh, Jung-Ja;Lee, Woo-Joo;Kim, Seong-Sook;Lee, Do-Hoon;Lee, Hyun-Kul;Song, Si-Whan;Kim, Kap-Ho;Choi, Yang-Kyu;Ryu, Kang-Sun;Kang, Boo-Hyon
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.263-278
    • /
    • 2013
  • The silkworm extract powder contain 1-deoxynojirimycin (DNJ), a potent ${\alpha}$-glycosidase inhibitor, has therapeutic potency against diabetes mellitus. Therefore, natural products containing DNJ from mulberry leaves and silkworm are consumed as health functional food. The present study was performed to evaluate the safety of the silkworm extract powder, a health food which containing the DNJ. The repeated toxicity studies and gentic toxicity studies of the silkworm extract powder were performed to obtain the data for new functional food approval in MFDS. The safety was evaluated by a single-dose oral toxicity study and a 90 day repeated-dose oral toxicity study in Sprague-Dawley rats. The silkworm extract powder was also evaluated for its mutagenic potential in a battery of genetic toxicity test: in vitro bacterial reverse mutation assay, in vitro chromosomal aberration test, and in vivo mouse bone marrow micronucleus assay. The results of the genetic toxicology assays were negative in all of the assays. The approximate lethal dose in single oral dose toxicity study was considered to be higher than 5000 mg/kg in rats. In the 90 day study, the dose levels were wet at 0, 500, 1000, 2000 mg/kg/day, and 10 animals/sex/dose were treated with oral gavage. The parameters that were monitored were clinical signs, body weights, food and water consumptions, ophthalmic examination, urinalysis, hematology, serum biochemistry, necropsy findings, organ weights, and histopathological examination. No adverse effects were observed after the 90 day administration of the silkworm extract powder. The No-Observed-Adverse-Effect-Level (NOAEL) of silkworm extract powder in the 90 day study was 2000 mg/kg/day in both sexes, and no target organ was identified.