• Title/Summary/Keyword: glycol process

Search Result 315, Processing Time 0.029 seconds

Preparation of Crack-free YBCO Films by EPD on Silver

  • Soh, Dea-wha;Li, Young-mae;Korobova N.;Park, Sung-Jai
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald;Lee, Moonyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.255-265
    • /
    • 2018
  • The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

Effects of Corrosion Inhibitor on Corrosion of Al-based Alloys in Ethylene Glycol-Water Coolant Environment

  • Gwang-Soo Choi;Young-Man Kim;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.305-313
    • /
    • 2023
  • The objective of this study was to investigate the effectiveness of sodium dodecyl benzene sulfonate (SDBS) as a corrosion inhibitor on the pitting corrosion behavior of aluminum alloys used in electric vehicle battery cooling systems within a mixture of ethylene glycol and water (EG-W) coolant. Potentiodynamic polarization testing revealed unstable passive film formation on the aluminum alloys in the absence of SDBS. However, the addition of SDBS resulted in a robust passive film, enhancing the pitting corrosion resistance across all examined alloys. Pitting corrosion was predominantly observed near intermetallic compounds in the presence of Cl? ions, which was attributed to galvanic interactions. Among tested alloys, A1040 demonstrated superior resistance due to its lower areal fraction of precipitates and donor density. The incorporation of SDBS inhibitors mitigated the overall pitting corrosion process by hindering Cl? ion penetration. These findings suggest that SDBS can significantly improve pitting corrosion resistance in aluminum alloys employed in battery coolant environments.

Fabrication of Biomass Based Polyethylene Furoate Nanofiber by Electrospinning (전기방사법을 이용한 바이오매스 유래 polyethylene furoate 나노섬유 제조에 관한 연구)

  • Choi, Hyun-Jin;Kim, Sun Hee;Kim, Beak-Jin;Kim, Sang Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4024-4031
    • /
    • 2014
  • Nanofibers have attracted significant interest in many industrial fields because their high surface area and porosity. In addition, the continued use of petrochemical based polymers has caused the depletion of oil resources and accelerated the greenhouse effect by the emission of carbon dioxide. Therefore, biomass-based polymer has become a very important environmentally friendly alternative. In this study, nanofibers were fabricated by an electrospinning process using biomass based PEF(polyethylene furoate) prepared by the polymerization of 2,5-furandicaboxylic acid and ethylene glycol. Furthermore, the electrospun nanofiber was strongly affected by various parameters, such as the solvent, polymer concentration and electric field. In conclusion, nanofibers with an average fiber diameters of 200 - 700 nm could be prepared at polymer concentration of 15 wt% using HFIP, and their fiber diameter increased with increasing electric field.

Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols (양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구)

  • Lee, Jae-Myung;Seol, Yang-Ho;Kwon, Jung-Ok;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • Poly(epichlorohydrin) copolyol series (PECH copolyols) were synthesized via cationic ring-opening copolymerization (ROCP) of oxirane-based monomers and effects of reaction temperature, solvent type, and initiator were studied. As a comonomer, two types of alkylene oxides were used, and polymerization conditions were conducted both with diethylene glycol (DEG) as an initiator in methylene chloride (MC) solvent and tripropylene glycol (TPG) in toluene solvent. In order to induce the active monomer (AM) mechanism in the ring-opening copolymerization reaction, the monomer was injected by an incremental monomer addition (IMA) method using a syringe pump, and the polymerization was performed at -5 ℃. PECH copolyol, a synthesized ephichorohydrin (ECH)-based copolyol, was converted to glycidyl azide-based energy-containing copolyol (GAP copolyol) by azadizing the ECH unit through a substitution reaction. It was confirmed that the synthesized azide copolyol had little effects on changes of the solvent and the initiator. Also, the molecular weight increased 500 after the azide reaction, thereby the GAP copolyol was polymerized as designed. As the content of the comonomer increased, both the Tg and viscosity tended to decrease due to the influence of the alkyl chain length. It is possible to fundamentally prevent CH3N3 amount produced in the azide reaction process, and it is expected that a large-scale process could be achievable.

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

Comparison of CO2 Removal Capabilities among Rectisol, SelexolTM, and Purisol Process for DME Synthesis and Separation Process (DME 합성 및 분리공정에서 CO2 제거를 위한 Rectisol 공정과 SelexolTM 및 Purisol 공정 사이의 성능비교)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • In the dimethyl ether (DME) synthesis and separation process, over 8% by mole of $CO_2$ is fed to the DME synthesis reactor which lowers DME productivity. Therefore, this work focused on the removal of $CO_2$ using three kinds of processes with physical absorbents by comparing the utility consumption through computer simulation of each process. Among the processes selected for comparison are Rectisol$^{(R)}$ process using methanol, Purisol$^{(R)}$ process using n-methyl pyrrolidone (NMP), and SelexolTM process using dimethyl ethers of polyethylene glycol (DEPG) as a solvent. As a result of this study, it was concluded that Purisol$^{(R)}$ process consumes the least energy followed by SelexolTM process. Therefore, it is considered that Purisol$^{(R)}$ process is the most suitable method to absorb $CO_2$ contained in the feed of DME synthesis reactor.

The conservation of the ancient ships salvaged in North Europe-Especially on the Conservation of the Viking ships - Especially on the Conservation of the Viking ships in Denmark (북유럽 인양목선의 보존처리-덴마아크 Viking선을 중심으로)

  • Bae, Byong-Whan
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.278-291
    • /
    • 1986
  • In this report the practical case of Viking ship's conservation in Denmarke specially among the Eurpoean nations is introduced. The contents of it are summarized as follows :From 1957 to 1962 the Danish National Museum Salvaged five Viking ships from the bottom of Roskilde Fjord, Which were composed of the pieces of timber whose surface was soft because they had lain on the sea bed for about a thousand years. Excavation had been carried out in the same way as in the field by driving down a sheet piling around the wrecks and pumping the water out. These pieces of the wreck ships were packed in airtight plastic bags one by one to be transported for Brede and then immidiately had to go through the treatment for conservation. The conservation treatment process for the pieces includes three steps ; the preliminary process prior to the hardening treatment, the hardening and the assemble of the ships. In the first step ; the preliminary process, all remains of mud and shells from the fjord bed are washed off, and measuring followed ; every single piece of wreckage was drawn so that the form and size of the piece, nail holes, and breaks were registered before conservation. In the second ; the hardening treatment step, the pieces of the woreckage were filled with P.E.G. This Polyethylene Glycol method was the best to handle in the subsequent mounting of the ships in the museum. In the final, the Glycol-treated pieces were pieced together to spips with support of a system of reinforcements. They were to fit in place after corrections of the form were made several times.

  • PDF

Inkjet Printing Process to Fabricate Non-sintered Low Loss Density for 3D Integration Technology (잉크젯 프린팅 공정을 이용한 3D Integration 집적 기술의 무소결 고충진 유전체막 제조)

  • Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.192-192
    • /
    • 2009
  • We have successfully demonstrated the inkjet printing process to fabricate $Al_2O_3$ thick films without a high temperature sintering process. A single solvent system had a coffee ring pattern after printing of $Al_2O_3$ dot, line and area. In order to fabricate the smooth surface of $Al_2O_3$ thick film, we have introduced a co-solvent system which has nano-sized $Al_2O_3$ powders in the mixture of Ethylene glycol monomethyl ester and Di propylene glycol methyl ether. This co-solvent system approached a uniform and dense deposition of $Al_2O_3$ powders on the substrate. The packing density of inkjet-printed $Al_2O_3$ films is more than 70% which is very high compared to the value obtained from the films synthesized by other conventional methods such as casting processes. The characterization of the inkjet-printed $Al_2O_3$ films has been implemented to investigate its thickness and roughness. Also the dielectric loss of the films has been measured to understand the feasibility of its application to 3D integration package substrate.

  • PDF

Low Temperature Synthesis of BaCeO3 Nano Powders by the Citrate Process (Citrate Process를 이용한 BaCeO3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Joo, Kyoung;Kim, Chang-Yeoul;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.604-609
    • /
    • 2002
  • Nanosized $BaCeO_3$ powders with the stoichiometric composition of a molecular level were synthesized by the citrate process based on the Pechini method. Polymeric precursor was formed by use of citric acid and ethylen glycol, as chelating agent of metal ions and reaction medium, respectively. Single phase orthorhombic structured $BaCeO_3$powders, about 100 nm sized and uniform shaped were obtained through the calcination of the polymeric precursor at $900^{\circ}C$ for 4 h. Extremely small quantities of carbonate ions($CO_^{2-}$) were completely decomposed at over $1100^{\circ}C$. The mean size of the powders was increased twice, however, it has very uniform distribution in its size and shape.