• Title/Summary/Keyword: glycol process

Search Result 316, Processing Time 0.025 seconds

UV-INDUCED POLYMERIZATION OF SIZE-CONTROLLED PLATINUM/POLY[STYRENE-DIVINYLBENZENE-TRI(PROPYLENE GLYCOL) DIACRYLATE] HYDROPHOBIC CATALYST BEADS IN MICROFLUIDICS

  • WEI, JUN;LI, XIANG;SONG, TONG;SONG, ZI-FAN;CHANG, ZHEN-QI;MENG, DA-QIAO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.738-745
    • /
    • 2015
  • The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by ${\gamma}$-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of $200-1,000{\mu}m$ by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

Characterization of Streptococcus mutans Ingbritt Sucrose-glucan Glucosyltransferase and the Inhibition Effect of Chitin Derivatives on its Activity (Streptococcus mutans Ingbritt sucrose-glucan glucosyltransferase 특성과 그 활성에 미치는 키틴 유도체들의 효과)

  • Ju, Wan-Taek;Ji, Myeong-Sim;Park, Ro-Dong
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.173-178
    • /
    • 2012
  • Sucrose-glucan glucosyltransferase (Gtf) is an important enzyme involved in the cavity formation process where insoluble glucan is synthesized. In this study, we purified Gtf from Streptcoccus mutans Ingbritt through ammonium sulfate precipitation, Sephadex G-150, CM-Sephadex, and DEAE-Sephadex column chromatographies. A 13-fold of purification was achieved with a total yield of 6.3%. The apparent molecular mass of the enzyme was determined to be 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal pH and temperature were established to be 6.0 and $40^{\circ}C$, respectively. The enzyme activity could be inhibited to 22-59% by 1 mM $Hg^{2+}$, $Cu^{2+}$ and $Al^{3+}$, and to 68% by 1 mM EDTA. It was also inhibited 40% by 2 mM xylitol and 35-45% by 0.05% soluble chitosan, glycol chitosan, and glycol chitin. This is the first report to reveal the inhibition effect of chitin derivatives on Gtf activity, which may be further applicable to develop gargles to overcome cavity.

Vitrification solution without sucrose for cryopreservation in mouse blastocysts

  • Joo, Jong Kil;Lee, Young Ju;Jeong, Ju Eun;Kim, Seung Chul;Ko, Gyoung Rae;Lee, Kyu Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • Objective: This study was designed to investigate the survival rate of vitrified mouse blastocysts depending on the presence or absence of sucrose in vitrification solution. Methods: Mouse two-cell embryos were collected and cultured to blastocysts. Two vitrification solutions were prepared. The control solution was composed of 25% glycerol, 25% ethylene glycol, and 0.5 M sucrose (G25E250.5S) containing 2.5 mL glycerol, 2.5 mL ethylene glycol, 2 mL SSS, and 0.855 g sucrose in 5 mL PB1. The experimental solution was composed of 25% glycerol and 25% ethylene glycol (G25E25) and contained 2.5 mL glycerol and 2.5 mL ethylene glycol in 5 mL PB1. Artificial shrinkage was conducted by aspirating the blastocoelic fluid using an ICSI pipette. To examine the effect of sucrose in the vitrification solution on the survival rate of mouse blastocysts, the shrunken-equilibrated blastocysts were rehydrated or vitrified after being exposed to one of the two vitrification solutions. After exposure and the vitrification-thawing process, the re-expansion rate and hatching rate were evaluated after 6 hours of in vitro culture. Results: The re-expansion rate of mouse blastocysts exposed to vitrification solution with and without sucrose were not different in the experimental solution (without sucrose) (98%) and the control solution (with sucrose) (92%) (p>0.05). The hatching rate was higher in the experimental solution (95%) than in the control solution (88%), but did not differ across two treatments (p>0.05). The re-expansion rate of mouse blastocysts vitrified in the control solution was 92% and 94%, respectively (p>0.05), and the hatching rate was higher in the experimental solution (90%) than in the control solution (74%) (p<0.05). Conclusion: Sucrose need not be added in vitrification solution for freezing of artificially shrunken mouse blastocysts.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Investigation of Hydrate Inhibition System for Shallow Water Gas Field: Experimental Evaluation of KHI and Simulation of MEG Regeneration Process

  • Lee, Suk;Kim, Hyunho;Park, Ki-Heum;Seo, Yutaek
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.342-350
    • /
    • 2020
  • In this study, a hydrate inhibition system is investigated for shallow water gas fields. Mono-ethylene glycol (MEG) injection has been used as a typical method for inhibiting hydrate formation in gas fields; therefore, most offshore platforms are equipped with MEG injection and regeneration processes. A recent application of a kinetic hydrate inhibitor (KHI) has reduced the total volume of MEG injection and hence reduce the operating cost. Experiments are designed and performed to evaluate and verify the KHI performance for inhibiting hydrate formation under shallow water conditions. However, the shut-in and restart operation may require the injection and regeneration of MEG. For this operation, the MEG concentration must be optimized while considering the cost of MEG regeneration. The obtained results suggest that decreasing MEG concentration from 80 wt% to 70 wt% can reduce the life cycle cost (LCC) of MEG regeneration process by approximately 5.98 million USD owing to reduced distillation column cost. These results suggest that the hydrate inhibition system must be evaluated through well-designed experiments and process simulations involving LCC analysis.

Characteristics of ZnO Varistors Prepared by Organiz Process (유기화학적 방법에 의한 제조된 ZnO 바리스터의 특성)

  • 안충선;심영재;조성걸;조병두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.253-258
    • /
    • 1992
  • ZnO varistors were prepared by the organochemical method which used citric acid and ethylene glycol as gelling agents. The microstructure of the sintered specimens exhibited small grains, uniform grain size distribution, and few intragranular pores. Thermal decomposition of the organic resin formed during the powder preparation process was completed around 450$^{\circ}C$. No significant changes were observed in microstructure and current voltage characteristic with respect to calcination temperatures. A major advantage of the organochemical method used in this experiment is a possible uniform mixing of trace amounts of dopants. Therefore, this powder preparation method seems promising in investigating the effect of Li or In ion, which is added in ppm level to ZnO varistors, on the pulse respose characteristic.

  • PDF

Synthesis and Characterization of Nanosized MnxFe2O4 Powders by Glycothermal Process

  • Bae, Dong-Sik;Kim, Eun-Jung;Lee, Hae-Won;Han, Kyong-Sop
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.903-906
    • /
    • 2002
  • Nanosized $Mn_xFe_2O_4$ powders were prepared in ethylene glycol solution under mild temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The average size and distribution of the synthesized $Mn_xFe_2O_4$ powders was about 20 nm and broad, respectively. The phase of synthesized particles was crystalline reacted at 200${\circ}C$ for 6h. The magnetic properties of the synthesized $Mn_xFe_2O_4$ powders were about 35-60 (emu/g) with superparamagnetic character.