• 제목/요약/키워드: glycine nitrate process

검색결과 47건 처리시간 0.026초

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제21권1호
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Comparison of $La_{1-x}Ca_{x}MnO_{3}$ Properties by Glycine Nitrate Process and Solid State method for GMR sensor (CMR Sensor 제조를 위한 자발착화 연소합성법(GNP)과 고상반응법으로 제조한 $La_{1-x}Ca_{x}MnO_{3}$ 분말의 물성 비교)

  • Kang, Young-Chul;Park, Sung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.882-884
    • /
    • 1999
  • 금속 다층박막과 미세입상 합금박막에서 발견된 Giant Magnetoresistance(GMR)현상에 고무되어 최근에는 50년대에 밝혀졌던 산화물 자기저항 재료에 관하여 새롭게 연구하고 있다. Perovskite 구조를 가지는 $La_{1-x}Ca_{x}MnO_{3}$ 박막에서 큰 자기저항을 얻었으며 이를 Colossal Magentoresistance (CMR)이라 한다. 본 연구에서는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 고상반응법과 자발착화연소 합성법(Glycine-Nitrate Process)으로 각각 제조하였으며 비교 분석하였다. TGA을 이용하여 불순물과 미반응 물질을 확인하여 적당한 하소온도를 결정하였고 XRD를 이용하여 결정상을 분석하였다. Dilatometer를 이용해 $1400^{\circ}C$까지의 열팽창율을 측정하였다. BET로 비 표면적을 비교하였으며, 주사전자현미경(SEM)으로 각각 제조된 분말의 입자상태와 입자성장을 확인하였다. GNP법으로 합성한 경우가 고상반응법을 이용한 경우보다 입자의 크기가 submicron 단위로 미세하고 비표면적도 수배 컸으며, 고순도의 perovskite 구조를 갖는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 얻을 수 있었다.

  • PDF

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method (글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • 제20권7호
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.

The Effect of Mixed Amino Acids on Nitrate Uptake and Nitrate Assimilation in Leafy Radish

  • Liu, Xing-Quan;Kim, Young-Sun;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • 제24권3호
    • /
    • pp.245-252
    • /
    • 2005
  • The objective of the present work was to determine the corresponding uptake and assimilation of ${NO_3}^-$ in roots and shoots of leafy radish by applying of mixed amino acids (MAA). The amino acids used in this experiment were alanine (Ala), ${\beta}-alanine\;({\beta}-Ala)$, aspartic acid (Asp), asparagines (Asn), glutamic acid (Glu), glutamine (Gln), and glycine (Gly). Leafy radish was grown by conventional fertilization with macro- and micronutrients under controlled conditions. The 15-day-old seedlings were treated 0, 0.3 and 3.0 mM of MAA containing 5 mM ${NO_3}^-$ in growth medium. Nitrate uptake was determined by following ${NO_3}^-$ depletion from the uptake solution. The activity of the enzymes related to the process of ${NO_3}^-$ reduction (NR: nitrate reductase; NiR: nitrite reductase; GS: glutamine synthetase) and the content of ${NO_2}^-\;and\;{ND_3}^-$ were analyzed in shoots and roots. The results of this study showed that ${NO_3}^-$ uptake was inhibited 38% with treatment of 0.3 mM of MAA. However, there was more than three times increase of N03- uptake in 3.0 mM MAA. In addition, the enzymatic activities were positively affected by the high MAA rate. Finally, the ${NO_3}^-$ content was increased slightly both in shoots and roots of leafy radish by MAA treatments.

Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells (고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구)

  • 최창주;김태성;황종선;김선재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • 제33권10호
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

Characterization for Electrical Properties of Sintered 20mol% Gd-doped CeO$_2$ Electrolyte (20mol% Gd-doped 소결체 CeO$_2$ 전해질의 전기적 특성분석)

  • 김선재;국일현
    • Journal of the Korean Ceramic Society
    • /
    • 제35권1호
    • /
    • pp.97-105
    • /
    • 1998
  • 20mol% Gd-doped CeO2 ultrafine powders as a promising electrolyte for the low temperature solid ox-ide fuel cells were synthesized with particle sizes of 15-20 nm using glycine nitrate process(GNP) fol-lowed by sintering their pellets at 150$0^{\circ}C$ for various times in air and then the electrical properties of the sintered pellets were investigated. The sintering behaviors and electrical properties for the sintered 20 sintered mol% Gd-doped CeO2 pellets were analyzed using dilatometer and SEM and AC two-terminal impedance technique respectively. As the heating temperature increased the synthesized powder had the sintering behaviors to show the start of the significant shrink at temperature of about $700^{\circ}C$ and to show the end of the shrink at the temperature of about 147$0^{\circ}C$. When the pellets were sintered with the vaious times at 150$0^{\circ}C$ the temperatuer which the shrink had been already completed the grain sizes in the sintered 20 mol% Gd-doped GeO2 pellets increased with the increase of the sintering time but their electrical resis-tivities showed the minimum value at the sintering time of 10h. It is due that the pellet sintered for 10h had the minimum activation energy fior the electtrical conduction. Thus it is thought that the decrease of the activation energy with the increase of the sintering time to 10h is induced by the enhanced mi-crostructure like the decrease of pore amount and the grain growth and its increase with the sintering times more than 10h is induced by the increase of the amounts of the impurities such as Mg. Al and Si from the sintering atmosphere.

  • PDF