• 제목/요약/키워드: glycation

검색결과 158건 처리시간 0.42초

Increased DNA Damage Induced by Glycation Propagator (Glycation propagator에 의한 DNA damage 증가)

  • 손태건;곽이섭;진영완
    • Journal of Life Science
    • /
    • 제14권3호
    • /
    • pp.406-410
    • /
    • 2004
  • Glyoxal or methylglyoxal was incubated with catalase in 0.24 M sodium phosphate buffer (pH 7.4) at 37$^{\circ}C$. Dicarbonyls modify and inactivate catalase. Plasmid DNA that is directly incubated with glycation propagators, glyoxal and methylglyoxal, showed different DNA mobility shift compared to nomal plasmid DNA. When plasmid DNA is added in Fenton reaction with glycated catalase, plasmid DNA was significantly strand broken and 8-hydroxydeoxyguanosine production was time dependently increased. These results suggest that glycation of antioxidant is synergistic effect to oxidative stress.

Inhibitory Effects of Total Extract and Flavonols from Hardy Rubber Tree (Eucommia ulmoides Oliver) Leaves on the Glycation of Hemoglobin

  • Kim, Hye-Young;Kim, Kyong;Lee, Myung-Ki
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.603-605
    • /
    • 2006
  • Our previous study demonstrated that aqueous ethanolic extract of hardy rubber tree (HRT; Eucommia ulmoides Oliver) leaves potently inhibited glycation, and that two known flavonols and one new flavonol were the active compounds in protein glycation in vitro using the model system of bovine serum albumin and fructose. The aim of this study was to examine the effectiveness of HRT extract and its flavonols against the glycation of hemoglobin (Hb) in primary cultured rat erythrocytes. The extract at $40-400\;{\mu}g/mL$ and the flavonols at $0.2-20\;{\mu}g/mL$ significantly inhibited Hb glycation in a concentration-dependent manner. They were more effective than aminoguanidine, a well-known inhibitor of glycation. Three flavonols seemed to be responsible for the inhibitory activity of the extract, furthermore, the extract of HRT leaves showed advantages over single isolated flavonols in the inhibition of Hb glycation.

Influence of Albumin Glycation on the Protein Binding of Drugs (알부민 Gylcation이 약물의 단백질결합에 미치는 영향)

  • Bae Jin-Woo
    • The Korean Journal of Pharmacology
    • /
    • 제31권1호
    • /
    • pp.135-140
    • /
    • 1995
  • Glycation occurs by covalent binding between the carbonyl group of monosaccharides and the epsilon amino group of amino acid. It can alter the physiological function of proteins and causes the development of diabetic complications. In this study, the influence of glycation on protein binding of warfarin and dansylsarcosine was studied by equilibrium dialysis which was performed for 3 hours at $37^{\circ}C$ in the water bath. The high glycated albumin which contained $50{\pm}16%$ of glycated albumin bound less than natural albumin which contained $8.5{\pm}5.28%$ of glycated albumin, if drugs concentration were more than the albumin concentration. But only warfarin binding showed a significant difference of 6% (P<0.05) when the molar concentration ratio of warfarin per albumin was 3. In consideration of low therapeutic concentrations, low glycated albumin concentrations in the body, and rapid elimination of excessive free drugs, these small increaes of free warfarin concentrations by glycation of albumin are not considered as risk. factors for drug intoxication for diabetics, if renal functions are intact.

  • PDF

Diabetic Atherosclerosis and Glycation of LDL(Low Density Lipoprotein)

  • Park, Young-June;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • 제1권1호
    • /
    • pp.134-142
    • /
    • 1996
  • Diabetes carries an increased risk of atherosclerotic disease that is not fully explained by known car-diovascular risk factors. There is accumulating evidence that advanced glycation of structural proteins, and oxidation and glycation of circulating lipoproteins, are implicated in the pathogenesis of diabetic ather-osclerosis. Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the ather-ogenic potential of certain plasma constituents, including low density lipoptotein(LDL). Glycation of LDL is significant increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls ; enhanced uptake of LDL by the macrophages, thus stimulating foam cell formation ; increased platelet aggregation; formation of LDL-immune complexes ; and generation of oxygen free radicals, resulting on oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterzied by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation" occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age : in diabetes, their rate of accumulate is accelerated. Inhibition of glycation, oxidation and glycoxidation may form the basis of future antiaterogenic strategies in both diabetic and nondiabetic individuals.dividuals.

  • PDF

Inhibition of advanced glycation end product formation by burdock root extract (우엉 뿌리 추출물의 최종당화산물 형성 억제 효능)

  • Lee, Darye;Kim, Choon Young
    • Journal of Nutrition and Health
    • /
    • 제49권4호
    • /
    • pp.233-240
    • /
    • 2016
  • Purpose: Diabetic complications are a major concern to manage progression of diabetes. Production of advanced glycation end products (AGEs) due to high blood glucose is one of the mechanisms leading to diabetic complications. Multiple pharmacologic AGE inhibitory agents are currently under development, but clinical applications are still limited due to safety issues. Thus, it is necessary to identify a safe anti-glycation agent. It is known that burdock roots have antioxidant, anti-inflammatory, and anti-cancer activities. The objective of the present study was to investigate the inhibitory role of burdock roots on the formation of high glucose-induced glycation of bovine serum albumin (BSA). Methods: In this study, glycation of BSA by glucose, galactose, or fructose at $37^{\circ}C$ for 3 weeks was assessed based on levels of ${\alpha}$-dicarbonyl compounds (early-stage glycation products), fructosamine (intermediate products of glycation), and fluorescent AGEs (late-stage glycation products). In order to compare the inhibitory actions of burdock root extract in AGE formation, aminoguanidine (AG), a pharmacological AGE inhibitor, was used as a positive control. Results: BSA glycation by glucose, fructose, and galatose was dose- and time-dependently produced. Burdock root extract at a concentration of 4 mg/mL almost completely inhibited glucose-induced BSA glycation. The results demonstrate that burdock root extract inhibited AGE formation with an $IC_{50}$ value of 1.534 mg/mL, and inhibitory activity was found to be more effective than the standard anti-glycation agent aminoguanidine. This study identified a novel function of burdock root as a potential anti-glycation agent. Conclusion: Our findings suggest that burdock root could be beneficial for preventing diabetic complications.

Antiglycation and antioxidant activity of four Iranian medical plant extracts

  • Safari, Mohammad Reza;Azizi, Omid;Heidary, Somayeh Sadat;Kheiripour, Nejat;Ravan, Alireza Pouyandeh
    • Journal of Pharmacopuncture
    • /
    • 제21권2호
    • /
    • pp.82-89
    • /
    • 2018
  • Objective: Diabetes mellitus (DM) is the most common metabolic disorder that defined by chronic hyperglycemia for the deficiency in insulin secretion or resistance. Hyperglycemia could induce non-enzymatic glycation of proteins. It has been suggested that some traditional plants can improve blood glucose and inhibit glycation process. This work evaluates and compares the anti-glycation activities of four Iranian plant extracts in vitro. Methods: The methanolic extract of "Fumaria officinalis, Stachys lavandulifolia, Salvia hydrangea and Rosa Damascene" was prepared in three different concentrations. Phenolic, flavonoids content and antioxidant activity were evaluated. The multistage glycation markers- fructosamines (early stage), protein carbonyls (intermediate stage) and ${\beta}$ aggregation of albumin were investigated in the bovine serum albumin (BSA)/ glucose systemt. Results: All plants showed the high potency of scavenging free radicals and glycation inhibition in the following order: Fumaria officinalis> Rosa Damascene> Stachys lavandulifolia > Salvia hydrangea. There was a significant correlation between antioxidant and anti-glycation activity. Also, the antioxidant and anti-glycation capacity of extracts correlated with total phenolic and flavonoids content. Conclusion: Our findings demonstrated that the studied plants are good sources of anti-glycation and antioxidant compounds and, these properties can primarily attributable to phenolics, particularly flavonoids.

An Analysis of the proteomics approach to the glycated peptides of human milk

  • Cho, Seonghyeon;Park, Jong-Moon;Lee, Hookeun;Song, Jun Hwan;Kang, Nam Mi
    • Analytical Science and Technology
    • /
    • 제35권1호
    • /
    • pp.8-14
    • /
    • 2022
  • Many studies have shown that advanced glycation end-products (AGEs) and glycation adducts are significantly linked to aging and disease. Particularly, the level of glycation in human milk is important because the AGE intake is closely related to AGE levels in infants. In this study, we used human milk samples obtained from four primiparae and four multiparae. We isolated proteins using acetone and trichloroacetic acid (TCA) precipitation. A total of 67 glycated proteins and 122 glycated peptides was quantified; among them, 19 glycated peptides were differentially expressed. We confirmed that the degree of glycation differed according to fertility. The study provides a foundation for using proteomics to evaluate the mother's milk quality and link between maternal health and human milk quality.

Advanced Glycation End Products and Diabetic Complications

  • Singh, Varun Parkash;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2014
  • During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

Effect of Methoxy PEG-45 Thioctate (LA-PEG) against Oxidative Protein Damage and Anti-glycation (Methoxy PEG-45 Thioctate (LA-PEG)의 항노화 효과에 대한 연구)

  • Kim, Jin Hwa;Oh, Jung Young;Bae, Jun Tae;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제43권3호
    • /
    • pp.239-245
    • /
    • 2017
  • Aging is a physiological and irreversible, progressive process involving changes in the ability to maintain cellular functionality. It affects tissues, organs and the whole organism and thus finally cause to death. Oxidative stress has been postulated to contribute significantly to the accelerated accumulation of advanced glycation endproducts (AGEs) in collagen, which is implicated in the process of skin aging. In the present study, glycation inhibitory activity of methoxy PEG-45 thioctate (LA-PEG), and its inhibitory effect of cellular oxidation and senescence was investigated. Treatment of LA-PEG significantly showed lower fluorescent intensity induced by AGEs. In addition, LA-PEG was significantly reduced the formation of ROS induced by AGEs. High antioxidant and anti-glycation activities of LA-PEG in glycated collagen model indicated its contribution to anti-aging process. Cellular senescence leads to an increase in senescence-associated ${\beta}$-galactosidase ($SA-{\beta}-gal$) activity, which can be used as a biomarker to identify senescent cells. Treatment with LA-PEG showed a dose-dependent, statistically significant decreased in $SA-{\beta}-gal$ indicating reduced senescence. These results suggest that LA-PEG may have potent anti-aging effects and can be used as new functional materials against cellular accumulation of AGEs.

Inhibitory effects of curcumin on high glucose-induced damages: Implications for alleviating diabetic complications

  • Kim, Kyeong Yee;Kim, Choon Young
    • Food Science and Preservation
    • /
    • 제24권4호
    • /
    • pp.536-541
    • /
    • 2017
  • Hyperglycemia found in diabetes mellitus causes several physiological abnormalities including the formation of advanced glycation end products (AGEs) and oxidative stress. Accumulation of AGEs and elevation of oxidative stress plays major roles in the development of diabetic complications. Adiponectin secreted from adipocytes is known to improve insulin sensitivity and blood glucose level. Curcumin (CCM), a bioactive component of turmeric, has been reported as a potent antioxidant. Present work aimed to elucidate the roles of CCM in high glucose-induced protein glycation and intracellular events in mature adipocytes. The results demonstrated that CCM inhibited the formation of fluorescent AGEs by approximated 52% at 3 weeks of bovine serum albumin (BSA) glycation with glucose. Correspondingly, CCM decreased the levels of fructosamine and ${\alpha}-dicarbonyl$ compounds during BSA glycation with glucose. These data suggested that CCM might be a new promising anti-glycation agent. Also, CCM reduced high glucose-induced oxidative stress in a dose dependent manner, whereas CCM treatment time-dependently elevated the expression of adiponectin gene in 3T3-L1 adipocytes. The findings from this study suggested the possibility of therapeutic use of CCM for the prevention of diabetic complications and obesity-related diseases.