References
- Biophysical Chemistry v.105 Unusal susceptibility of heme proteins to damage by glucose during non-enzymatic glycation Brain,L.C.;A.A.Booth;P.Todd;B.G.Hudson;R.G.Khalifah https://doi.org/10.1016/S0301-4622(03)00100-5
- Annu. Rev. Med v.46 Advanced Protein Glycosylation in diabetes and aging Brownlee,M. https://doi.org/10.1146/annurev.med.46.1.223
- J. Am. Geria. Soc. v.33 Hypothesis glucose as a mediator of aging Cerami,A.
- Hoppe-Seyler's Z. Physiol. Chem. Bd v.363 Inactivation of bovine kidney B-N-Acetyl-D-glucosaminidase by nonenzymatic glycosylation Dolhofer,R.;A.Siess;O.H.Wieland https://doi.org/10.1515/bchm2.1982.363.2.1427
- Ph. D. thesis, Dept. of Food Eng Biotechnology. Yonsei University Studies on Glycation Propagator under physiological condition Eum,S.Y.
- Agric. Biol. chem v.50 Role of sugar fragmentation in early stage browning of amino acid Hayashi,T.;M.Namiki https://doi.org/10.1271/bbb1961.50.1965
- J. Biochem v.382 glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase Hong,Y.A.;J.H.John
- Nephrol. Dial. Transplant. v.11 no.supp15 Oxidative stress caused by glycation of Cu, Zn-superoxide dismutase and its effects on intracellular components Junichi,F.;M.Theingi;O.Ayako;K.Hideaki;T.Naoyuki
- International Journal of biological macromolecules v.33 Oxidative damage of DNA by the reaction of amino acid with methylglyoxal in the presence of Fe(III) Kang,J.H. https://doi.org/10.1016/S0141-8130(03)00064-3
- Toxicology. Letters v.145 Oxidative damage of DNA induced by methylglyoxal in vitro Kang,J.H. https://doi.org/10.1016/S0378-4274(03)00305-9
- Nucleic acids research v.12 no.4 Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents Kasai,H.;S.Nishimura
- J. Biol. Chem v.262 no.35 Glycation and Inactivation of Human Cu-Zn-Superoxide Dismutase Katsura,A.;M.Shiro;F.Shigeru;I.Hidenobu;I.Kiyoshi;T.Naoyuki
- J. Gerontol v.44 An emerging hypothesis: Synergistic induction of aging by free radicals and Maillard reaction Kistal,B.S.;B.P.Yu
- biochemical and Biophysical Research communication v.192 no.2 Strand breaks in DNA induced by a Thiol/Fe(III)/O₂mixed Function oxidase system and its protection by a yeast antioxidant protein Kwon,S.J.;K.Kim;H.Kim;I.K.Yoon;J.W.Park https://doi.org/10.1006/bbrc.1993.1481
- U.S. Dept. Agr. Report v.68 no.47 Loew.O.
- Diabetes v.41 no.Suppl.2 Lipoprotein glycation and its metabolic on sequences Lyons,T.J. https://doi.org/10.2337/diab.41.2.S67
- J. Biochem. Molecular. Toxicology v.17 no.1 Diabetes, Oxidative stress, and antioxidants: A Review Maritim,A.C.;R.A.Sanders;J.B.Watkins https://doi.org/10.1002/jbt.10058
- Method of enzymology v.186 Measurement of 8-hydroxy-2'-deox-yguanosine in DNA and urine by high-performance liquid chromatograph with electrochemical detection Mark,K.S.;J.W.Park;C.C.Kenneth;J.G.Carlos;N.A.Bruce https://doi.org/10.1016/0076-6879(90)86146-M
- J. Biol. Chem v.254 Functional properties of the glycosylated minor components of human adult hemoglobin McDonald,M.J.;R.Shapiro;M.Blechman;H.F.Bunn;R.W.Noble
- Mutat. Res. v.251 Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals Mello-Flho,A.C.;R.Meneghini https://doi.org/10.1016/0027-5107(91)90220-I
- Free radical Biology and Medicine v.23 no.5 Iron homeostasis, oxidative stress, and DNA damage Meneghini,R. https://doi.org/10.1016/S0891-5849(97)00016-6
- The maillard reaction in aging, Diabetes and Nutrition Toward maillard reaction in aging Monnier,V.M.;Baynes,J.W.;Monnier,V.M.;Alan,R.
- J. Biol Chem v.271 Protein cross-linking by Maillard reaction-Isolation, Characterization, and in vivo detection of a Iysine-Iysine Cross-link derived from methylglyoxal Nagaraj,R.H.;I.N.Shipanova;F.M.Faust https://doi.org/10.1074/jbc.271.32.19338
- Dialysis-Related Amyloidosis Contrib Nephrol v.112 Glycation of Metal-Containing Proteins such as Cu, Zn-superoxide Dismutase, Ceruloplasmin, and Ferritin: Possible Implication for DNA Damage in vivo Naoyuki,T.;K.Hideaki;N.I.Kazi;H.Sakuo;M.Theingi
- J. Biol. Chem v.267 Sitespecfic and random fragmentation of Cu, Zu-superoxide dismutase by glycation reaction Ookawara,T.;N.Kawamura;Y.Kitagawa;N.Taniguchi
- Carcinogenesis v.10 no.5 Detection of DNA adducts by high-performance liquid chromatography with electrochemical detection Park,J.W.;C.C.Kenneth;Ames,B.N. https://doi.org/10.1093/carcin/10.5.827
-
BBA
Glutathione/
${Fe}^{3+}$ /O₂-mediated DBA Strand breaks and 8-hydroxydeoxyguanosine formation Park,J.W.;A.F.Robert. - Archives of Biochemistry and Biophysics v.403 Inactivation of cellular enzymes by carbonyls and proteinbound glycation/glycoxidation products Philip,E.M.;R.T.Dean;M.J.Davies https://doi.org/10.1016/S0003-9861(02)00222-9
- Proc. Natl. Acad. Sci v.85 Normal oxidative damage to mitochondrial DNA is extensive Richard,C.;J.W.Park;B.N.Ames https://doi.org/10.1073/pnas.85.17.6465
- Biochem. Biophys. Acta v.964 Nonenzymatic glycation of antithrombin III in vitro Sakurai,T.;J.P.Biossel;F.Bunn https://doi.org/10.1016/0304-4165(88)90034-7
- J. Biol. Chem v.259 Nonenzymatic glycosylation of human serum albumin alters its conformation and function Shaklai,N.;R.Garlick;H.F.Bunn
- Kor. Biochem J. v.23 Formation of dicarbonyl compound from protein reducing sugar reaction system Shin,D.B.;R.Yang;W.C.Shin;S.H.Oh
- Free. Radic. Biol. Med. v.16 Powerful transition-metal ion chelator that inhibit copperbut potentiates iron-driven, fenton-type reactions Standstorm,B.E.;M.Granstorm;S.L.Marklud https://doi.org/10.1016/0891-5849(94)90141-4
- Ann. Chim. Phys v.11 Thenard.L.J.
- Biosci. Biotech. Biochem v.56 Glycation of myofibrillar protein in aged rat and mice Watanabe,H.;M.Ogasawara;N.Suzuki;Nishizawa;K.Ambo https://doi.org/10.1271/bbb.56.1109
- Experientia v.40 The autoxidation of glyceraldehyde and other simple monosaccharides Wolff,S.P.;M.J.C.Crabbe;P.J.Thornalley https://doi.org/10.1007/BF01947562