• Title/Summary/Keyword: gluten peptide

Search Result 8, Processing Time 0.024 seconds

Effects of Gluten and Soybean Polypeptides on Textural, Rheological, and Rehydration Properties of Instant Fried Noodles

  • Ahn, Chang-Won;Nam, Hee-Sop;Shin, Jae-Kil;Kim, Jae-Hoon;Hwan, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.698-703
    • /
    • 2006
  • We investigated how the addition of polypeptides to instant fried noodle dough affects the dough properties, starch gelatinization, and textural properties of cup-type instant fried noodles. After comparing farinograph results of 100% wheat flour with 1% wheat flour substituted with gluten, there was a small difference in the mechanical dough properties. However, in the case of 1% wheat flour substituted with gluten peptides, the dough development time increased, dough stability decreased, and weakness increased. On the other hand, when gluten or gluten peptides were added, starch gelatinization did not change significantly. At the steaming stage, substitution with gluten peptides or soybean peptides markedly changed the molecular weight distributions of extractable polypeptides. Especially in the case of wheat flour substituted with 1% gluten peptides, the relative portion of low Mw extractable polypeptides (2.5-50 kDa) decreased more compared to a control. Also, the hardness and chewiness decreased in cooked cup-type instant fried noodles containing gluten peptides. This suggests that the addition of gluten peptides can reduce the rehydration time of cup-type instant fried noodles.

Production of Peptides Enhancing Calcium Solubility in the Presence of Phosphate Ions In Vitro (In Vitro 상에서인 이온 존재 하에서의 칼슘 용해도를 증대시키는 펩타이드의 생산)

  • 이윤동;이현수
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.485-490
    • /
    • 1997
  • Gluten peptide was produced from corn gluten by enzymatic hydrolysis. This peptide had an ability to increased the solubility of calcium owing to protect calcium ions from forming precipitates of calcium phosphate in the presence of phosphate ions. The solubility of calcium was increased 5.2 times in the presence of 8.3 mg peptide produced by the treatment of papain. These peptides contained high acidic amino acids and fractionated by Delta pack column into fractions No. 1, No. 2 and No. 3. Among them the fraction No. 3 had the highest calcium binding capacity.

  • PDF

Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet

  • Bong, Ha-Yoon;Kim, Ji-Yeon;Jeong, Hye-In;Moon, Min-Sun;Kim, Joo-Hee;Kwon, O-Ran
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.106-113
    • /
    • 2010
  • In this study, we compared corn gluten hydrolyzates, BCAAs, and leucine for their effects on body weight reduction in high fat-induced obese rats in order to determine the major active components in the corn gluten hydrolyzates. After obesity was induced for 13 weeks with high fat diet, the overweight-induced SD rats (n = 64) were stratified according to body weight, randomly blocked into eight treatments, and raised for 8 weeks. Four groups were changed to a normal diet and the other groups remained on the high fat diet. Each of the groups within both diets was fed either casein, corn gluten hydrolyzates, leucine, or branched chain amino acids, respectively. Daily food intake, body weight gain, and food efficiency ratio were significantly lower in the corn gluten hydrolyzate groups compared to the other groups, regardless of the high fat diet or normal fat diet. The rats fed the corn gluten hydrolyzates diet had the lowest perirenal fat pad weights whereas muscle weight was significantly increased in the corn gluten hydrolyzates groups. Plasma triglyceride, hepatic total lipid, and total cholesterol contents were significantly reduced in the corn gluten hydrolyzates groups. Other lipid profile measurements were not significantly changed. Plasma triglyceride and hepatic total lipid were also significantly reduced in the BCAA and leucine groups. Leptin levels were significantly lower and adiponectin was significantly higher in the corn gluten hydrolyzates groups. Fasting blood glucose, insulin, C-peptide, and HOMA-IR levels were also significantly reduced in the corn gluten hydrozylates groups, regardless of fat level.

Extension Properties of Frozen Hard Wheat Flour Doughs Mixed with Ascorbic Acid and Gluten Hydrolysate

  • Koh, Bong-Kyung
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.590-593
    • /
    • 2007
  • The textural properties of doughs mixed with L-ascorbic acid (AA), trypsin hydrolyzed gluten peptide (THGP), and a mixture of AA-THGP were investigated using texture analyzer under the fermentation of the full formula and the freezing process. The full formula dough (FFD) required a shorter mixing time than the flour and water formula dough (FWD). The maximum resistance (Rmax) values of both the unfrozen and frozen doughs were lower for the FFD. The effects of AA and THGP additions were not significant (p<0.01) in FFD, however, they were significant in FWD. The freezing effect was significant (p<0.0001) for FFD, indicating that yeast fermented dough was much more sensitive to damage from freezing, which subsequently affected dough strength. Additions of AA (p=0.0026) and THGP (p=0.0097) had a significant effect on the extensibility (E-value) of unfrozen FWD, where THGP increased and AA decreased the E-value. However, freezing did not significantly effect the extensibilities of FWD (p=0.64) or FFD (p=0.21). The area of FFD was lower than the area of FWD for both the unfrozen and frozen doughs. However, the frozen dough mixed with THGP alone had the largest area overall. The addition of additives did not result in significantly different (p<0.01) areas under the curve, except in the frozen FFD. Freezing caused a statistically significant difference in the area of FWD (p=0.0045).

Peptide Inhibitors for Angiotensin I Converting Enzyme from Corn Gluten Digests. (옥수수 글루텐 효소 가수분해물의 Angiotensin I Converting Enzyme 활성 저해 펩타이드의 정제)

  • 오광석;이동건;홍정운;성하진
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The angiotensin I converting enzyme (ACE) has an important role in the maintenance of blood pressure. The ACE inhibitory activities of foods have recently been studied. We tried to isolate ACE inhibitory peptides from the Flavourzyme (FZ), Pescalase (PE), and Thermolysine (TH) protease digests of corn gluten, which was restricted to the use the source of food for digestion problem. The FZ, PE, TH/PE protease hydrolyzed corn gluten and the inhibitory activities of the hydrolyzates for ACE were measured. Major fractions were isolated from the digests using ODS chromatography after treating with ethanol in step gradient. The ACE inhibitors were further purified by Bio-Gel P-2 column and reverse phase HPLC. Five inhibitory peptides were isolated. Their amino acids were sequenced as LPF ($IC_{50}$ = 40$\mu$M), GPP ($IC_{50}$ = 17.6$\mu$M), PNPY ($IC_{50}$ = 30.7$\mu$M), SPPPFYL ($IC_{50}$ = 63 $\mu$M), and SQPP ($IC_{50}$ = 17.2$\mu$M).

Antimicrobial Activity of Gluten Hydrolysate with Asp. saitoi Protease (밀 단백 효소 가수분해물의 항균활성)

  • Lee, Sang-Duk;Joo, Jeong-Hyeon;Lee, Gyu-Hee;Lee, K.T.;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.745-751
    • /
    • 2003
  • This study was carried out to investigate whether peptide produced from wheat protein by enzyme hydrolysis can be used as a natural antimicrobial agent. Antimicrobial peptide was obtained from wheat protein hydrolyzed by 7 of pretense. The produced antimicrobial peptide was purified through ultrafiltration, membrane filtration and HPLC and molecular weight and amino acid sequence of the purified antimicrobial peptide were determined. Among hydrolysate produced from wheat protein by 7 of protease, antimicrobial activity was observed for the peptide obtained from Asp. saito protease. The Asp. saito protease did produce antimicrobial hydrolysate showing the highest antimicrobial activity at reaction condition of 37$^{\circ}C$ and pH 6.0, but not at reaction condition above 5$0^{\circ}C$. Wheat protein hydrolysate was fractionated by membrane filtration and showed antimicrobial activity between molecular weight 1,000~3,000. The antimicrobial activity fraction obtained by membrane filtration was separated through HPLC and showed antimicrobial activity in the peak of retention time 31.1~31.8 min. We could convince this hydrolysate as heat-stable peptide since antimicrobial activity was maintained after treated with heat for 15 min at 121$^{\circ}C$. Molecular weight of antimicrobial peptide identified by MALDI-mass was 1,633. Amino acid sequence of antimicrobial peptide was cysteine, glycine, prolin, prolin, prolin, valine, valine, alanine, alanine and arginine.

Effects of Level and Degradability of Dietary Protein on Ruminal Fermentation and Concentrations of Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Hanwoo Steers

  • Oh, Young-Kyoon;Kim, Jeong-Hoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Kang, Su-Won;Nam, In-Sik;Kim, Do-Hyung;Song, Man-Kang;Kim, Chang-Won;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.392-403
    • /
    • 2008
  • Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumen-degraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.

Effects of Dietary Proteins on Serum Insulin-like Growth Factor-I (IGF-I) and IGF-Binding Protein-3 in Korean Rockfish, Sebastes schlegeli (사료의 단백질이 조피볼락 혈액중 Insulin-like growth factor-I (IGF-I) 및 IGF-binding protein-3에 미치는 영향)

  • NAM Teak-Jeong;KWON Mi-Jin;LEE Sang-Min;PARK Kie-Young;KIM Yoon;PARK Sung-Real;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.550-555
    • /
    • 2001
  • Insulin-like growth factor-I (IGF-I) is a mitogenic peptide with a molecular mass of 7 kDa. It is produced mainly in the liver and has important functions in the regulation of development and somatic growth. Moreover, Serum IGF-I concentration is regulated by the quantity and the nutritional quality of dietary protein. To determine the IGF-I level in Korean rockfish, Sabastes schlegeli, were fed four experiment diets that contained different protein quantities, namely $30\%,\;40\%,\;50\%\;and\;60\%$ for 70 days. Weight gain of the fish increased depending dietary protein quantity, Also, IGF-I concentrations increased according to dietary protein quantity, Feeding experiments were conducted to examine the effects of dietary protein sources on the serum IGF-I level in Korean rockfish, Fish meal (CO), soybean meal (SM), corn-gluten meal (CGM), meat meal (MM) and feather meal (FM) were used as variable protein sources of the formulated diet. IGF-I concentrations of the CO and MM groups ($277.7\pm23.2,\;291.5\pm41.2\;ng/mL$) were higher than those of the CGM and FM groups ($208.9\pm21.3,\;217.2\pm38.2\;ng/mL$). And IGFBP-3 levels by western blot analysis increased in good protein diets such as in the CO and MM groups. In conclusion, IGF-I may be a sensitive indicator the protein metabolism in fish as well as mammalian.

  • PDF