• 제목/요약/키워드: glutathion

검색결과 93건 처리시간 0.024초

급성 부동 스트레스 후 척수 회색질에서 Peroxiredoxin I 및 III의 발현 변화 (Characterization of Peroxiredoxins in the Gray matter in the spinal cord after Acute Immobilization Stress)

  • 백남현;곽승수;이동석;이영호
    • Journal of Trauma and Injury
    • /
    • 제19권2호
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: Many stresses produce reactive oxygen species and bring about mechanism of antioxidant reaction. Cytokine and a neurotransmitter through the cell membrane, as well as signal transduction through the cell membrane, are used for various pathological condition of the brain, such as neurodegenerative disease. There are several antioxidant enzymes in cells (superoxcide dismutase, glutathion peroxidasae, peroxiredoxin catalase, etc.) Methods: This study used single- or double-label immunohistochemical techniques to analyze mouse spinal neuron cells expressing Prx I and Prx III after acute mobilization stress. Results: Prx I was observed in dendritic cell of the gray matter of the spinal cord, and Prx III was observed in the cytoplasm of the GM of the spinal cord. Conclusion: The results of this study will help to explain differences of expression in the distributions of the peroxiredoxin enzymes of the spinal cord.

가미행체탕 합 육미지황탕이 Oxidant 및 Hg에 의한 가토 간세포손상에 미치는 영향 (The Effect of Kamihaengche-tang Plus Yukmijihwang-tangon Oxidant and Hg-induced Rabbit's Liver Cell Injury)

  • 이수행;김원길;김우환
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.174-187
    • /
    • 2002
  • Objectives : This study was carried out to determine whether Kamihaengche-tang plus Yulanijihwang-tang (KCYH) exerts a protective effect against oxidant-induced liver cell injury. Methods : Cell injury was estimated by measuring lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) release, and lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation in rabbit liver slices. Results : Oxidants (tBHP and $H_2O_2$) increased dose-dependently LDH release which was significantly prevented by 1% KCYH. The protective effect of KCYH against oxidant-induced cell injury was dose-dependent in the range of 0.05-1 % concentrations. Similarly, KCYH inhibited oxidant-induced lipid peroxidation in a dose-dependent manner. When liver tissues were exposed to Hg (0.5 mM), ALT activity in the medium and lipid peroxidation in tissues were markedly increased. These changes were prevented by 1% KCYH, KCYH restored toxicant-induced inhibition of cellular GSH content. KCYH increased the activities of catalase and glutathion peroxidase in oxidant-treated tissues. Conclusions : These results indicate that KCYH exerts a protective effect against oxidant-induced liver cell injury, and this effect is attributed to prevention of lipid peroxidation. These effects may be due to an increase in concentration of endogenous antioxidants.

  • PDF

신규 항균물질 5-S-GAD(N-${\beta}$-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine)의 합성 및 생리활성 (Synthesis and Biological Activity of 5-S-GAD(N-${\beta}$-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine), a Novel Antibacterial Substance)

  • 임재윤;박호용
    • 약학회지
    • /
    • 제42권3호
    • /
    • pp.248-256
    • /
    • 1998
  • We had already reported that we purified N-${\beta}$-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), a novel antibacterial substance from the immunized adult Sarcoph aga peregrina (Flesh fly). We found that the antibacterial activity of synthetic 5-S-GAD is equal to that of authentic 5-S-GAD without a specificity of antibacterial activity against Gram positive and Gram negative. Significant synergism was detected between 5-S-GAD and streptomycin against streptomycin resistant strain E.coli K12 594. It has an antitumor activity against several tumor cell lines at a concentration of $100{\mu}M$. However, no cytotoxic activity against murine macrophage was detected at a concentration of $500{\mu}M$. Furthermore, haemolytic activity against sheep erythrocytes was not detected at the same concentration. We suggest that the S-conjugation of glutathion with dihydroxyphenylalanine might be important to increase antibacterial activity of dihydroxyphenylalanme.

  • PDF

a-Tocopherol Inhibits the Accumulation of Phospholipid Hydroperoxides in Rat Tissues Induced by 2, 2'-azinobis Hydrochloride

  • Lim, Beong-Ou;Choue, Ryo-Won;Kim, Jong-Dai;Ju, Hyang-Ran;Park, Dong-Ki
    • Nutritional Sciences
    • /
    • 제6권1호
    • /
    • pp.20-24
    • /
    • 2003
  • The effect of a-tocopherol on the formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxides, in the tissues of 2, 2 -azobis Hydrochloride (AAPH) - dosed rats was investigated. In a-tocopherol supplemented rats, the activities of glutathione peroxidase, catalase and superoxide dismutase were significantly inhibited, compared with the AAPH group. AAPH treatment led to oxidation of phospholipids in the liver, lungs, brain, plasma and red blood cells (RBC), resulting in a notable increase in phosphatidylcholine hydroperoxide (PCOOH). All tissues of the rats given an $\alpha$-tocopherol supplement showed an attenuation of the stimulating effect of AAPH, leading to low levels of formation of PCOOH. Also, the rats injected with AAPH and a-tocopherol showed relatively normal-appearing hepatocytes, except for a little loss of the granules. With regards to the morphological appearance of the liver, it was observed that oral intakes of a -tocopherol resulted in an antioxidant defense against attacks of peroxyl radicals. Thus, we suggest that a-tocopherol is potentially helpful in protecting membrane phospholipids against oxidative damage in vivo.

Development of a Unidirectional Expression Vector: in a Search of Suppressor against a Cell Death-Inducing Protein, Jpk

  • Kong Kyoung-Ah;Park Sung-Do;Kim Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.139-143
    • /
    • 2006
  • Jopock (Jpk) has previously been ascertained that induces both bacterial and mammalian cell death. The Escherichia coli cells expressing Glutathion S-transferase (GST) fused Jpk showed elongated phenotype and inhibited cell growth which led eventual cell death. In an attempt to search the genetic suppressor of the lethal protein Jpk in bacterial cells, we constructed a unidirectional protein expression vector inserting tac promoter next to the C-terminus Jpk in pGEX-Jpk. The function of additional tac promoter was confirmed by substituting lac promoter in Plac-TOPO plasmid. The cells harboring plac- TOPO, which regulates $lacZ{\alpha}$ gene expression under lac promoter, formed blue colonies in 5-bromo-4-3 $indolyo-{\beta}-D-galactoside$ (X-gal) plate. When lac promoter was changed to tac promoter, same results were observed. Since the addition of tac promoter did not affect the toxic effect of Jpk, the pGEX-Jpk-ptac could be a useful vector for the screening of suppressor(s) for Jpk, in which GST-Jpk and a putative Jpk-suppressing protein are coexpressing from two unidirectional tac promoters, which response to the same inducer, $isopropyl-{\beta}-D-thiogalactopyranoside (IPTG)$.

  • PDF

인간 유방암 세포 MCF-7에서 산화적 스트레스에 의한 카드뮴의 아폽토시스 (Cadmium Induces Apoptosis Through Oxidative Stress in Human Breast Cancer MCF-7 Cells)

  • 오지영;이수정;신재호;김태성;문현주;강일현;강태석;김안근;한순영
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.241-250
    • /
    • 2004
  • 본 연구는 건전지나 플라스틱 등 산업물질, 식품, 흡연 그리고 공기, 물 등을 통해 인간과 생태계에 노출되고 있는 중금속 카드뮴을 인간 유방암 세포 MCF-7에 처리하였을 때 일어나는 현상을 살펴보고 나아가 카드뮴의 독성기전을 규명하기 위해 시행되었다. 카드뮴으로 인한 아폽토시스는 DNA분절 현상과 핵의 쪼개짐, 세포주기에 있어서 sub-G1의 출현 그리고 아폼토시스시에 발현되는 단백질 caspase의 발현, 특히 산화적 스트레스상태에서 마이토콘드리아가 손상을 입었을 때 발현되는 caspase-9의 발현을 통해 확인하였다. 카드뮴으로 인한 산화적 스트레스는 활성 산소종이 대조군에 비해 증가하고 이를 방어하기 위한 항산화효소 superofide dismutase, catalase, glutathion redurtase가 감소함을 통하여 확인하였다. 이 상의 결과들을 통해 카드뮴은 인간 유방암 세포 MCF-7에서 산화적 스트레스를 유발시켜 아폼토시스를 일으키는 것으로 추정할 수 있다.

Naphthazarin Derivatives: Synthesis, Cytotoxic Mechanism and Evaluation of Antitumor Activity

  • You, Young-Jae;Zheng, Xiang-Guo;Kim, Yong;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • 제21권5호
    • /
    • pp.595-598
    • /
    • 1998
  • The rate of the GSH conjugate formation, the inhibition of DNA topoisomerase-I and the cytotoxic activity against L1210 cells of the naphthoquinones showed the same order; 5,8-dimethoxy-1,4-naphthoquinone (DMNQ)>6-(1-hydroxyethyl)-DMNQ>2-(1-hydroxyethyl)-DMNQ; the steric hindrance of the substituents, particularly 2-substutuent, in reacting with cellular nucleophiles must be the main cause for lowering the bioactivities. Acetylation of 2-(1-hydroxyethyl)-DMNQ producing 2-(acetyloxyethyl)-DMNQ potentiated the bioactivities; 2-(-hydroxyethyl)-DMNQ did not react with GSH and the enzyme, and showed $ED_{50}$ of 0.146 mg/ml for the cytotoxcity. Furthermore, the acetylation 2-(1-hydroxyethyl)-DMNQ(T/C, 119%) enhanced the T/C values for the mice bearing S-180 tumor {T/C of 2-(1-acetyloxyethyl)-DMNQ, 276%]. It was assumed that the difference in bioactivities ensued by acetylation was based on the mechanism of the so-called bioreductive alkylation.

  • PDF

황원자를 함유한 아미노산 검출용 전하이동형 색소에 관한 연구 (Charge Transfer Dye Probe for Thiol-containing Amino Acid)

  • 신인섭;권선영;마츠모토 신야;김성훈
    • 한국염색가공학회지
    • /
    • 제27권4호
    • /
    • pp.261-269
    • /
    • 2015
  • Two new D-${\pi}$-A dyes were synthesized by the condensation reaction between active methyl and aromatic aldehyde and its biothiol sensing properties in DMSO/water were investigated by UV-vis spectroscopy. Upon addition of $Hg^{2+}$, the solution of D-${\pi}$-A dyes showed color change and the absorption band shows a formation of a dye-$Hg^{2+}$ coordination complex. These dyes exhibited high selectivity for $Hg^{2+}$ as compared with other cations. The dye-$Hg^{2+}$ could be recovered by adding glutathion(GSH). The absorption intensity of dye-$Hg^{2+}$ increased only by the addition of glutathione(GSH). The competition experiments revealed that no obvious interference was observed by performing the titration with the mixture of glutathione(GSH) and other amino acids. The results indicated that these D-${\pi}$-A dyes were highly selective for glutathione(GSH) detection.

Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향 (Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines)

  • 서은영
    • Journal of Nutrition and Health
    • /
    • 제46권6호
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Upregulation of Glutathion S-Transferase mu 1 in Bovine Cystic Follicles

  • Kang, Da-Won;Kim, Chang-Woon;Han, Jae-Hee
    • 한국수정란이식학회지
    • /
    • 제25권4호
    • /
    • pp.273-279
    • /
    • 2010
  • Follicular cystic follicles (FCFs) show delayed regression with persistent follicle growth. However, the mechanism by which follicles are persistently grown remains unclear. Glutathione S-transferases (GSTs) are drug-metabolizing and detoxification enzymes that are involved in the intracellular transport and metabolism of steroid hormones. In this study, a proteomic analysis was performed to identify whether GST expression is changed in bovine FCFs and to predict the interactions between GST and other proteins. Normal follicles and FCFs were classified based on their sizes (5 to 10 mm and 25 mm). In bovine follicles, GST mu 1 (GSTM1) was detected as a differentially expressed protein (DEP) and significantly up-regulated in FCFs compared to normal follicles (p<0.05). Consistent with the proteomic results, semi-quantitative PCR data and western blot analysis revealed an up-regulation of GSTM1 in FCFs. Expression levels of aromatase and dehydrogenase proteins were changed in FCFs. These results show that the up-regulation of GSTM1 that is observed in bovine FCFs is likely to be responsible for the persistent follicle growth in FCFs as the activity of aromatase and the dehydrogenases.