• Title/Summary/Keyword: glutamine synthetase

Search Result 78, Processing Time 0.02 seconds

Genetic Transformation of Irpex lacterus and Phlebia tremellosa to an Antibiotic Resistance (아교버섯과 기계충버섯의 형질전환)

  • Kim, Yun-Jung;Kim, Myung-Kil;Song, Hong-Gyu;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.147-149
    • /
    • 2007
  • White-rot fungi which degrade lignin can also degrade diverse recalcitrant compounds such as polymeric dyes, explosives, pesticides, and endocrine disrupting chemicals. Lignin degrading enzymes are involved in the degradation reactions, and introduction of foreign genes into a white-rot fungus is required in order to increase the degrading capacity. Genetic transformation experiment has been carried out in Irpex lacteus and Phlebia tremellosa to an antibiotic resistance. The transformation yields were 50-70 transformants/${\mu}g$ DNA and 15-25 transformants/${\mu}g$ DNA in I. lacteus and P. tremellosa, respectively. The stable replication of the plasmid was confirmed by PCR using the plasmid-specific primers, and many mutants were generated during this integration in both fungi.

Effect of Cytokines on the Growth and Differentiation of the Glial Cells from Rat Brain in Culture (랫트 배양 신경교세포의 성장 및 분화에 대한 Cytokine의 효과)

  • Kim, Hae-Kyoung;Youn, Yong-Ha;Kang, Shin-Chung;Park, Chan-Woong;Kim, Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.177-188
    • /
    • 1996
  • The effects of cytokines on the growth and differentiation of glial cells in culture were evaluated to confirm that cytokines could modify the number and function of glial cells. Proliferation of glial cells was determined by the $^3H-thymidine$ uptake and the double immunostain with anti-cell specific marker and anti-bromodeoxyuridine(BrdU) antibody. To check the effect on the differentiation of glial cells, the amount of glial fibrillar acidic protein(GFAP) and the activity of glutamine synthetase(GS) were measured in astrocytes. And also the amounts of myelin basic protein(MBP) and the activity of 2',3'-cyclic nucleotide phosphohydrolase(CNPase) were measured in oligodendrocytes. Among the cytokines used, only interleukin-$1{\beta}(IL-1{\beta})$ stimulated the growth of type 1 and type 2 astrocyte as well as 0-2A precursor cell. When the functional changes in these glial cells by cytokines were tested, $IL-1{\beta}$ did not increase GFAP content in type 1 and type 2 astrocyte, but $IL-1{\beta}$ increased GS activity in type 1 astrocyte, and slightly decreased this enzyme activity in type 2 astrocyte. Also interleukin-2(IL-2) and $interferon-{\gamma}$ $(IFN-{\gamma})$ inhibited the activity of GS in type 1 and type 2 astrocyte. On the other hand, all cytokines used did not modify the growth and differentiation in oligodendrocytes. From these results we could suggest that $IL-1{\beta}$ increases the growth of type 1 and type 2 astrocyte and also promotes the development for 0-2A precursor cell to type 2 astrocyte.

  • PDF

Biochemical characterization of Haemophilus Influenzae TPx-GRX (Haemophilus Influenzae TPx-GRX의 생화학적 특성연구)

  • Lee, Dong-Suk;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.7-24
    • /
    • 2004
  • We found new type of thiol peroxidase, fused with GRX.(TPx-GRX) The TPx-GRX exists in pathogenic bacteria including -. This protein was homogeneously purified from the E.coli recombinant overexpressing TPx-GRX. In the presence of a thiol-containing electron donor such as DTT, the purified TPx-GRX has potent the antioxidant to prevent the inactivation of GS by the MCO system, which is comprised of DTT, $Fe^{3+}$, and $O^2$. The antioxidant activity is much higher that other thiol peroxidase. The investigate the peroxidase activity of TPx-GRX, we directly measured the peroxidase activity of TPx-GRX toward peroxides in terms of the removal of peroxides in the presence of GSH. This result demonstrates that the peroxidase activity of TPx-GRX. These taken together results suggest that TPx-GRX is a new member of thiol peroxidase. These observations also suggest that in the pathogenic bacteria, TPx-GRX plays an important antioxidative role as a multiple array defence mechanism against oxidative stress.

  • PDF

Levels of Resistance and Fitness in Glufosinate-ammonium-Resistant Transgenic Rice Plants (Glufosinate-ammonium 저항성 형질전환벼의 저항성 수준과 적응성에 관한 연구)

  • Yun, Young Beom;Kuk, Yong In
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • The objectives of this research were to quantify resistance levels of transgenic rice expressing the bar gene to glutamine synthetase (GS)-inhibiting, and methionine sulfoximine and photosynthesis-inhibiting herbicide, paraquat, and compare the ammonium accumulation, chilling injury, and yield between transgenic and non-transgenic rice. The transgenic rice lines were 45-96-fold more resistant to glufosinate-ammonium than non-transgenic rice. The transgenic rice lines were also 18-fold more resistant to methionine sulfoximine, but was not resistant to paraquat, which has different target site. Glufosinate-ammonium increased the ammonium accumulation in leaves of non-transgenic rice plants, but had minimal or no effect on leaves of transgenic lines. The transgenic lines except for 258, 411, 607 and 608 were more susceptible during chilling and recovery than non-transgenic rice plants. The yield of transgenic lines 142, 144, 258 and 608 was similar or higher than that of non-transgenic rice in pot conditions.

Expression, Purification and Characterization of Yeast Thioredoxin System. (Yeast Thioredoxin System의 발현, 정제 및 특성조사)

  • 정진숙;김명희;김강화
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.483-489
    • /
    • 1998
  • We carried out the expression and characterization of yeast thioredoxin system including thioredexin 1 (Trx1), Trx2, thioredoxin reductase (TR), and a novel thioredoxin (Trx3), which was reported in the data base of Saccharomyces genome. The Trx1, 2 and TR were expressed as soluble proteins in E. coli and the sizes of purified proteins were equal to the reported their molecular weights. The expressed Trx3 was found in both soluble fraction and precipitate. The size of Trx3 purified from soluble fraction of E. coli crude extracts was estimated as 14 kDa on SDS-PAGE instead of 18 kDa for Trx3 in precipitate. N-terminal amino acid sequence of the small size of purified Trx3 from soluble fraction was analyzed as FQSSYTS which is correspond to the sequence from 20 to 26 for Trx3. Trx3 together with thioredoxin reductase and NADPH was able to reduce the disulfide bridge of insulin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Trx3 stimulated the antioxidant effect of thioredoxin peroxidase 1 (TPx1) which inhibited inactivation of glutamine synthetase (GS) in dithiothreitol (DTT) containing metal catalyzed oxidation system. The stimulation effect of Trx3 was 10% of the effect of either Trx1 or Trx2. In addition, Trx3 could reduce the disulfide of TPx to thiol, so that the TPx had thioredoxin dependant peroxidase activity. In western blotting analysis, antibodies against purified Trx3 did not cross-react with crude extracts of yeast, purified Trx1, and Trx2 proteins. But, in PCR reaction using the cDNA library of yeast as a template, gene encoding of trx3 was amplified.

  • PDF

Expression and Characterization of Thiol-Specific Antioxidant Protein, DirA of Corynebacterium diphtheriae (코리네박테리움 디프테리아 티올 특이성 항산화단백 DirA의 발현 및 특성)

  • Myung-Jai Choi;Kanghwa Kim;Won-Ki Choi
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • A Corynebacterium diphtheriae iron-repressible gene dirA, that was homologous to TSA of Saccharomyces cerevisiae and AhpC subunit of Salmonella typhimurium alkyl hydroperoxide reductase, was amplified with PCR and expressed in E. coli. The DirA purified from the transformed E. coli crude extracts prevented the inactivation of enzyme caused by metal-catalyzed oxidation (MCO) system containing thiols but not by ascorbate/Fe$^{3+}$/$O_2$ MCO system. The DirA concentration, which inhibited the inactivation of glutamine synthetase by 50% (IC$_{50}$) against MCO system, was 0.12 mg/ml. The multimeric forms of DirA were converted to the monomeric form in SDS-PAGE under the thioredoxin system comprised of NADPH, Saccharomyces cerevisiae thioredoxin reductase, and thioredoxin. Also, DirA showed thioredoxin dependent peroxidase activity. All of these results were consistent with the characteristics of a thiol specific antioxidant (TSA) protein having two conserved cysteine residues.

  • PDF

Effect of $Cr^{6+}$ Stress on Photosynthetic Pigments and Certain Physiological Processes in the Cyanobacterium Anacystis nidulans and Its Chromium Resistant Strain

  • KHATTAR, J. I. S.,;SARMA, T. A.;ANURADHA SHARMA,
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1211-1216
    • /
    • 2004
  • A MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) induced chromium resistant strain ($Cr^{r}18$) of unicellular cyanobacterium Anacystis nidulans has been isolated and characterized. The resistant strain could grow (although restricted to $50\%$ of control) in chromium concentration (180${\mu}M$) lethal to the wild-type. Sublethal ($160{\mu}M$) concentration of $Cr^{6+}$ significantly reduced (13-$37.5$) all the photosynthetic pigments of A. nidulans with maximum reduction in phycoerythrin followed by ChI $\alpha$. Pigments of A. nidulans were drastically decreased in lethal concentration of Cr^{6+} with maximum reduction in phycoerythrin ($75\%$) and allophycocyanin ($67.5\%$). Resistant strain $Cr^{r}18$ resisted toxic effects of sublethal and lethal concentrations of $Cr^{6+}$ on photosynthetic pigments as revealed by less decrease in pigments as compared to A. nidulans. Effect of $Cr^{6+}$ stress was also studied on nitrogen assimilation and phosphate uptake. Sublethal concentration of $Cr^{6+}$ drastically reduced ($71.5\%$) nitrate uptake by A. nidulans while a decrease of $29\%$ was observed in strain $Cr^{r}18$. Short (2 day) exposure of A. nidulans and its resistant strain $Cr^{r}18\;to\;Cr^{6+}$ did not affect nitrate reductase and glutamine synthetase (transferase), whereas longer (10 day) exposure to $Cr^{6+}$ lowered activities of both enzymes in A. nidulans but not significantly in the strain $Cr^{r}18$. Ammonium uptake by both strains was not affected by $Cr^{6+}$. Thus, $Cr^{6+}$ affected photosynthetic pigments, nitrogen assimilation, and phosphate uptake of A. nidulans, while strain $Cr^{r}18$ was able to resist toxic effects of the metal. Advantages of using strain $Cr^{r}18$ for bioremediation purposes have been evaluated by studying $Cr^{6+}$ removal from the solution. Resistant strain $Cr^{r}18$ was able to remove $33\%$ more $Cr^{6+}$ than A. nidulans and thus it can prove to be a good candidate for bioremediation of $Cr^{6+}$ from polluted waters.

Varietal Response of Tobacco Plants Through Tissue Culture to Butachlor and Bialaphos Herbicides (조직배양(組織培養)에 의한 제초제(除草劑) Butachlor와 Bialaphos에 대(對)한 담배의 품종간반응(品種間反應))

  • Bae, Y.Z.;Kim, K.U.;Jeong, H.J.
    • Korean Journal of Weed Science
    • /
    • v.8 no.1
    • /
    • pp.53-58
    • /
    • 1988
  • This study was carried out to determine effect of butachlor [N.-(buthoxymethyl)-2-chloro-N-(2,6-diethylphenyl) acetamide] and bialaphos [2-amino-4(hydroxy)(methyl) phosphionyl] butyryl-alanylalanine sodium salt on the germination of tobacco seed, induction and growth of callus from tobacco. Further, fatty acids and ammonia content of tobacco calli were determined. Bialaphos had no effect on tobacco seed germination, but the growth of seedling was markedly affected by an application of 10 ppm bialaphos. However, regardless of varieties tested, tobacco seed germination was completely inhibited by $5{\times}10^{-5}M$ of butachlor. At an application of $5{\times}10^{-5}M$ butachlor, tobacco seeds were to some extent germinated and showed further growth. Hyangcho among varieties tested, showed the most tolerant response to butachlor. In induction of callus from various tobacco varieties and their growth, aromatic type of tobacco varieties exhibited the most tolerance against bialaphos. However, no distinct varietal differences were determined in the treatment of butachlor. The major fatty acids identified in tobacco calli were palmitic, oleic and linoleic acid. No marked difference in terms of fatty acids was observed among tobacco varieties used, but it was observed that there was the higher ratio of quantity in unsaturated fatty acids over saturated one, bialaphos treatment accumulated about 9 times higher ammonia content than that of the untreated control, giving an evidence that bialaphos might inhibit glutamine synthetase activity.

  • PDF