• Title/Summary/Keyword: glucose and lipid metabolism

Search Result 387, Processing Time 0.021 seconds

Effects of Chitosan Treated with Enzymatic Methods on Glucose and Lipid Metabolism in Rats (키토산의 효소분해물질이 흰쥐의 당 및 지방대사에 미치는 영향)

  • 이종미;조우균;박혜진
    • Journal of Nutrition and Health
    • /
    • v.31 no.7
    • /
    • pp.1112-1120
    • /
    • 1998
  • This study was conducted to investigate the effets of chitosan and beef tallow at different level on glucose and lipid metabolism in rats. Dietary fot level was 20% and 40%, and chitosan was given at levels of 0%, 3%, and 5%(wt/wt) of diet. Chitosan supplement tended to decrease the serum total lipids, total cholesterol, and triglycerides. HDL cholesterol and HDL cholesterol : total cholesterol ratio tended to increase with 5% chitosan supplementation. LDL cholesterol and VLDL triglyceride tended to decrease with chitosan supplementation. Lipid concentration of liver and epididymal fat pad(EEP) tended to decrease with medium dietary fat and chitosan treatment. fecal excretion of total lipid and triglyceride exhibited a tendency to increase with high fat levels and chitosan. Length of small intestine and gastrointestinal transit time were not affected by dietary fit levels or chitosan supplements. Therefore, it could be suggested that chitosan supplement had beneficial effects on lipid metabolism. (Korean J Nutrition 31(7) : 1112-1120, 1998)

  • PDF

Effects of Gamiolnyeo-jeon on Lipid Metabolism and Blood Glucose Level in db/db Mice (가미옥녀전(加味玉女煎)이 db/db 마우스 당뇨(糖尿)모델에서 지질대사(脂質代謝)와 항당뇨(抗糖尿) 효능(效能)에 미치는 영향(影響))

  • Sim, Boo-Yong;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.31 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • Objectives : Abnormal regulation of glucose and impaired lipid metabolism that result from a defective or deficient insulin are the key etiological factor in type 2 diabetes mellitus. The our study investigated the effects of Gamioknyeo-jeon (GO) on blood glucose and lipid metabolism improved by it in db/db mice (a murine model of type 2 diabetes mellitus).Methods : The animals were divided into 3 groups: Normal groups were not-treated C57BL/6 mice; Control groups were treated orally with DW in db/db mice; GO groups were treated orally with GO (200 ㎎/㎏/day) in db/db mice. After mice were treated with GO for 5 weeks, we measured AST, ALT, creatinine, BUN, body weight, food intake, blood glucose, insulin and lipid levels (total cholesterol, HDL cholesterol, and LDL cholesterol and atherogenic index(AI) and cardiac risk factor(CRF).Results : Serum AST, ALT, creatinine, BUN levels were not changed by GO do not show any toxic effects. GO groups were decreased in body weight, food intake and blood glucose level among compared to Control groups. Also, GO groups were found to have atherogenic Index and cardiac risk factor as well as lipid metabolism improvement (total cholesterol and LDL cholesterol decrease). Finally, GO groups were increased the insulin compared to Normal and control groups.Conclusions : We suggest that GO may have the control effects of diabetes mellitus by improving blood glucose control and lipid metabolism.

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Park, Mi-Kyoung;Kim, Duk-Kyu;Lee, Hye-Jeong;Hong, Sook-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.

Improvement of Lipid Metabolism and Antihyperglycemic by Lentinus edodes in High Fat-fed and Streptozotocin-treated Rats (고지방과 streptozotocin으로 유도한 제 2형 당뇨에서 표고버섯이 지질대사와 항당뇨 효능에 미치는 영향)

  • Kim, Gye Yeop;Yoon, Young Jeoi;Kim, Eun Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.196-201
    • /
    • 2013
  • Abnormal regulation of glucose and impaired lipid metabolism that result from a defective or deficient insulin are the key etiological factor in type 2 diabetes mellitus (T2DM). The our study evaluated the beneficial effect of diet supplementation with Lentinus edodes on hyperglycemia and lipid metabolism in normal and type 2 diabetic rats. The animals were divided into 4 groups: group I(control) rats were fed standard diet (12% of calories as fat); group II (T2DM) rats were fed HFD (40% of calories as fat) for 2 weeks and then injected with STZ (50 mg/kg); group III and group IV rats were continually fed a diet containing 1% and 10% Lentinus edodes for 4 weeks after T2DM induction, respectively. After 4 weeks we determined biochemical parameters such as glucose, insulin concentration, serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and glycosylated hemoglobin (HbA1c) concentration were also measured. There was a significant reduction in serum TC and TG in the Lentinus edodes supplement groups. The Lentinus edodes diet supplementation were found to have a potent lipid metabolism improvement as well as LDL concentration decreased and HDL concentration was increased. Concentrations of blood glucose and HbA1c in the experimental groups II were significantly decreased after 4 weeks compared with the control group. The Lentinus edodes diet supplementation is useful in regulating the glucose level, improves the insulin, HbA1c, serum lipid metabolism in experimental diabetic rats. We suggest that Lentinus edodes supplementation may have the control effects of diabetes mellitus by improving blood glucose control and lipid metabolism.

Dietary Supplementation of Sea Tangle (Laminaria japonica) Improves Blood Glucose and Lipid Metabolism in the Streptozotocin-induced Diabetic Rats

  • Park, Min-Young;Kim, Eun;Kim, Min-Sook;Kim, Kyung-Hee;Kim, Hyeon-A
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.712-716
    • /
    • 2009
  • The purpose of this study was to investigate the effect of dietary supplementation of sea tangle (Laminaria japonica) on the blood glucose and lipid metabolism in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were divided into 3 groups fed control, sea tangle powder (15%, w/w), or sea tangle water extract (4%, w/w) diet. Diabetes was induced by a single injection of STZ (60 mg/kg, i.p.) in citrate buffer. The animals were fed each of the experimental diet for 13 weeks. Serum insulin was increased by dietary supplementation of sea tangle in diabetic rats. Dietary sea tangle reduced blood glucose level of diabetic rats compared to the diabetic rats fed control diet. Dietary sea tangle also reduced the serum total cholesterol, low density lipoprotein (LDL)-cholesterol, and triglyceride in the diabetic rats. While hepatic lipids were reduced, fecal excretion of lipids was increased by supplementation with dietary sea tangle in the diabetic rats. These results indicate that dietary sea tangle decreased blood glucose and improved lipid metabolism in STZ-induced diabetic rats and this effect might be exerted by increases in serum insulin and fecal excretion of lipids.

Changes of Gangliosides Metabolism in Streptozotocin-Induced Diabetic Rats and Effect of Deer Antler (Streptozotocin 유발 당뇨병쥐 뇌에서 Gangliosides 대사 변화와 녹용의 효과)

  • 조현진;전길자
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.223-228
    • /
    • 1994
  • In this study, we examined gangliosides from streptozotocin-induced diabetic rat brain. To obtain the diabetic rat brain, we sacrified the rat three days after injecting the streptozotocin into venus in tail. We measured blood glucose level according to Somogy-Nelson method and measured insulin level using $^{125}$ I-insulin RIA kit. The gangliosides were extracted according to Folch-Suzuki method from the rat brain. We also examined the effect of major lipid components extracted from deer antler on diabetic rat brain. The results showed that the major lipids components lowered both blood glucose and insulin level in normal rat. However only the blood glucose level in diabetic rat was lowered with major lipid components. In diabetic rat brain, gangliosides metabolism were changed. The amount of GMla was increased while GDla, GDlb, and GTlb were not synthesized. Furthermore, undefined ganglioside was found. In major lipid component-treated diabetic rat brain, the ganglioside metabolism proceeded as same as the normal rat. On the contrary, in bovine brain gangliosides-treated diabetic rat brain, the gangliosides metabolism was not recovered to normal one.

  • PDF

Effects of Haw (Crataegus pinnatifida BUNGE) on Relaxation in the Lipid Components and Blood Glucose of Lipid Metabolism Syndrome (산사(Crataegus pinnatifida BUNGE)가 지질대사 증후군의 지질성분 및 혈당 완화에 미치는 영향)

  • Kim, Han-Soo;Kim, Min-A;Duan, Yishan;Jang, Seong-Ho;Lee, Won-Ki;Ryu, Jae-Young
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1021-1027
    • /
    • 2014
  • This study was designed in order to determine the influences of haw (Crataegus pinnatifida $B_{UNGE}$) on the lipid metabolism syndrome. Sprague Dawley rats, 7 weeks old, were given four different types of diets for 5 weeks: ND group (noncholesterolemic diet), HE group (non cholesterolemic diet+haw extract), CD group (cholesterolemic diet), CH group (cholesterolemic diet+haw extract). Concentrations of LDL-cholesterol, triglyceride, phospholipid, free cholesterol, cholesteryl ester, blood glucose were remarkably higher in the CD group than the other groups. But by treatment of haw extract group with cholesterolemic diet (CH group) were significantly decreased compared with CD group. Cholesteryl ester ratio was no difference between CD group and CH group. These results indicate that Crataegus pinnatifida $B_{UNGE}$ would be effective in lipid metabolism syndrome.

Effect of Diabetes Education Program on Glucose Metabolism and Lipid Metabolism, Self-efficacy in NIDDM Patients (당뇨교육 프로그램이 인슐린 비의존형 당뇨병 환자의 당대사와 지질대사 및 자기효능감에 미치는 영향)

  • Park, Hyong-Sook;Lee, Yun-Mi;Choi, Youn-Ok;Bae, Eun-Suk;Na, Jung-Hyun;Kim, Mi-Sook
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.4 no.2
    • /
    • pp.165-178
    • /
    • 2001
  • The purpose of this study is to determine the effect of diabetes education program on Glucose Metabolism(blood sugar, HbA1c) and Lipid Metabolism(total cholesterol, triglyceride, low density lipoprotein, high density lipoprotein), Self-efficacy in non-insulin independent diabetes mellitus. The study design was a non equivalent control group pre-test post-test design. Data for the study were collected from March 12 to June 19, 2001. Sixty-two research subjects were assigned to experimental(36) and control(26) groups. The collected data was analyzed using the Chi-Square test, t-test by spsswin program The results are as follows : 1. Experimental group had higher level of glucose metabolism than control group(FBS ; t=-3.317, p=.002, HbA1c; t=-4.956, p=.000). 2. Level of lipid metabolism were partly a significant different between experimental group and control group(Triglyceride ; t=-2.108, p=.039). 3. Experimental group had higher efficacy score than control group(t=4.651, p=.000). In conclusion, the study supported the effects of diabetes education program to increase metabolism an d self-efficacy. Further study with a longitudinal design is suggested to verify the effect of diabetes education program in NIDDM and standardized diabetes education program.

  • PDF

Effects of Legume Supplementation on the Glucose and Lipid Metabolism and Lipid Peroxidation in Streptozotocin-Induced Diabetic Rats (두류의 첨가가 당뇨병 쥐의 내당능과 지질대사 및 지질과산화에 미치는 영향)

  • 박수현;이혜성
    • Journal of Nutrition and Health
    • /
    • v.36 no.5
    • /
    • pp.425-436
    • /
    • 2003
  • The present study was conducted to evaluate the usefulness of common Korean legumes as a high-fiber supplement in therapeutic diets for diabetic patients. Streptozotocin-induced diabetic rats were used as animal models and four kinds of legumes, black soybean (BS), yellow soybean (YS), green pea (GP) and soybean curd residue (SCR) were tested as high-fiber supplements. Seven groups of normal and streptozotocin-induced diabetic rats were fed isocaloric experimental diets containing 8% dietary fiber from one of four legumes or purified cellulose and pectin for 6 weeks. The effects of the legumes on the glucose and lipid metabolism of diabetic rats was examined and compared with the effects of cellulose and pectin. The legume supplementation did not show any beneficial effect on glucose tolerance, however, it exhibited a plasma cholesterol-lowering effect in diabetic rats. The cholesterol-lowering action was especially strong in BS and the degree of the effect was comparable to that of pectin. The levels of total lipids, cholesterol, and triglyceride in the hepatic tissues of rats fed legume diets were similar to those of the pectin group. All legume supplements induced an increase in fecal steroid excretion. The fecal cholesterol contents were significantly high following the supplementations of YS and SCR (p < 0.05). The excretion of fecal bile acids in the BS and YS groups was significantly higher than it was in the pectin group (p < 0.05). Concentration of lipid peroxidation products in the blood and urine of diabetic animals was lower in the legume groups than in the cellulose group. The levels of hepatic lipid peroxidation products were significantly lower in the BS and YS groups than in the pectin group (p < 0.05). From the results of this study, the plasma cholesterol-lowering effect of BS is possibly due to the significant (p < 0.05) in-crease in fecal steroid excretion, which suggests that BS could be beneficial in improving abnormal lipid metabolism in diabetic rats. (Korean J Nutrition 36(5): 425∼436, 2003)

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice

  • Sun, Xufeng;Yamasaki, Masayuki;Katsube, Takuya;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-${\alpha}$, related to ${\beta}$-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing ${\beta}$-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake ($0.4{\times}10^{-5}$ vs $0.4{\times}10^{-5}$ mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.