• Title/Summary/Keyword: globular cluster red giants

Search Result 5, Processing Time 0.023 seconds

SPECTROSCOPIC STUDY ON RED GIANTS IN GLOBULAR CLUSTERS (구상성단 거성들의 분광 연구)

  • LEE SANG-GAK
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.15-30
    • /
    • 2000
  • A large scatter of the chemical abundances among globular cluster red giants has been observed. Especially the chemical elements C, N, O, Na, Mg, and Al vary form star to star within globular clusters. Except for $\omega$ Cen and M22, most globular clusters could be considered to be monometallic of their iron peak elements within error ranges. The variations in light elements among globuar cluster giants appear much more pronounced than in field halo giants of comparable Fe-peak metallicity. It has been found that in general the nitrogen abundance is anticorrelated with both carbon and oxygen, while it is correlated with Na and AI. These intracluster abundance inhomogeneities can be interpreted either by mixing of nucleosythesized material from the deep stellar interior during the red giant branch phase of evolution or by inhomogeneities of primordially processed material, from which the stars were formed. The simple way of distingushing between two senarios is to obtain the element abundances of main-sequence stars in globular clusters, which are too faint for high resolution spectroscopic studies until now. Both 'evolutionary' and 'primodial' origins are accepted for explanations of abundance variations among red giants and CN-CH anticorrelations among main-sequence stars in globular clusters. This paper reviews chemical abundances of light elements among globular cluster giants, with brief reviews of cannonical stellar evolution of low mass stars after main-sequence and deep mixing for abundance variations of cluster giants, and a possible connection between deep mixing and second parameter.

  • PDF

CN AND CH BAND STRENGTHS OF BRIGHT GIANTS IN THE GLOBULAR CLUSTER M15

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.137-142
    • /
    • 2000
  • CN and CH band strengths for ten new bright giants in the globular cluster M15 have been measured from archival spectra obtained with the Multiple Mirror Telescope. Using published indices for other bright M15 giants, a CN-CH band strength anticorrelation is found for bright red giants. However, stars that do not follow the CN-CH anticorrelation are also found. They seem to show a positive correlation between the two indices. Among them, all the AGB and HB stars of the sample are included. Stars I-38 and X6, which are located near the RGB fiducial line in the CMD, have low measured CH(G) indices compared with other RGB stars. Stars IV-38, S4, and S1, which are all near the RGB tip, have strong measured CH(G) indices. Therefore, most of their evolutionary states are suspected to be different from those of a normal single RGB star.

  • PDF

CN AND CH BAND STRENGTH VARIATIONS IN M71 GIANTS

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.23-31
    • /
    • 2005
  • CN and CH band strengths for fourteen bright giants in the globular cluster M71 have been measured from archival spectra obtained with the Multiple Mirror Telescope. Adding the collected. data from the literature we confirm a bimodality of CN distribution on the red giant branch and the honzontal branch, and CN-CH anti-correlations on the lower giant branch and horizontal branch. However a CN-CH anti-correlation on the upper red giant branch is not quite clear as those of other branches. The small number If statistics could not be excluded as a possible cause. To confirm this, a greater number of sample stars are needed. We also confirm that the ratio of CN-strong to CN-weak stars is quite different from that in 47 Tuc, although the anti-correlation between CN and CH bands, the bimodality of the CN distribution, and the spatial distribution of CN stars in M71 are found to be similar to those III 47 Tuc.

UBVI CCD Photometry of the Globular Cluster M30 (구상성단 M30의 UBVI CCD 측광연구)

  • Lee, Ho;Jeon, Young-Beom
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.557-568
    • /
    • 2006
  • We present CCD UBVI photometry for more than 10,000 stars in $20'.5{\times}20'.5$ field of the halo globular cluster M30. From a color-magnitude diagram, main sequence turnoff was obtained when $V_{TO},\;(B-V)_{TO},\;and\;(V-I)_{TO}\;are\;8.63{\pm}0.05,\;0.44{\pm}0.05\;and\;0.63{\pm}0.05$, respectively. From a (U-B)-(B-V) diagram, reddening parameter, E(B-V) equals $0.05{\pm}0.01$ and a UV color excess ${\delta}(U-B)\;is\;0.27{\pm}0.01$. The abundance is derived, where [Fe/H] equals $-2.05{\pm}0.09$ according to the photometric method and spectroscopic data. The observed luminosity function of M30 shows an excess in the number of red giants relative to the number of turnoff stars, when comparing with the predictions of canonical models. Using the Hipparcos parallaxes for subdwarfs, we estimate distance modulus, $(m-M)_o\;as\;14.75{\pm}0.12$. Using the R and R' method, we find helium abundances, Y(R) as $0.23{\pm}0.02$, Y(R') as $0.29{\pm}0.02$, respectively. Finally, the cluster' sage dispersion was deduced from 10.71 Gyr to 17 Gyr.

THEORETICAL STUDY ON OBSERVED COLOR-MAGNITUDE DIAGRAMS

  • Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.41-70
    • /
    • 1979
  • From $B\ddot{o}hm$-Vitense's atmospheric model calculations, the relations, [$T_e$, (B-V)] and [B.C, (B-V)] with respect to heavy element abundance were obtained. Using these relations and evolutionary model calculations of Rood, and Sweigart and Gross, analytic expressions for some physical parameters relating to the C-M diagrams of globular clusters were derived, and they were applied to 21 globular clusters with observed transition periods of RR Lyrae variables. More than 20 different parameters were examined for each globular cluster. The derived ranges of some basic parameters are as follows; $Y=0.21{\sim}0.33,\;Z=1.5{\times}10^{-4}{\sim}4.5{\times}10^{-3},\;age,\;t=9.5{\sim}19{\times}10^9$ years, mass for red giants, $m_{RG}=0.74m_{\odot}{\sim}0.91m_{\odot}$, mass for RR Lyrae stars, $m_{RR}=0.59m_{\odot}{\sim}0.75m_{\odot}$, the visual magnitude difference between the turnoff point and the horizontal branch (HB), ${\Delta}V_{to}=3.1{\sim}3.4(<{\Delta}V_{to}>=3.32)$, the color of the blue edge of RR Lyrae gap, $(B-V)_{BE}=0.17{\sim}0.21=(<(B-V)_{BE}>=0.18),\;[\frac{m}{L}]_{RR}=-1.7{\sim}-1.9$, mass difference of $m_{RR}$ relative to $m_{RG},(m_{RG}-m_{RR})/m_{RG}=0.0{\sim}0.39$. It was found that the ranges of derived parameters agree reasonably well with the observed ones and those estimated by others. Some important results obtained herein can be summarized as follows; (i) There are considerable variations in the initial helium abundance and in age of globular clusters. (ii) The radial gradient of heavy element abundance does exist for globular clusters as shown by Janes for field stars and open clusters. (iii) The helium abundance seems to have been increased with age by massive star evolution after a considerable amount (Y>0.2) of helium had been attained by the Big-Bang nucleosynthesis, but there is not seen a radial gradient of helium abundance. (iv) A considerable amount of heavy elements ($Z{\sim}10{-3}$) might have been formed in the inner halo ($r_{GC}$<10 kpc) from the earliest galactic co1lapse, and then the heavy element abundance has been slowly enriched towards the galactic center and disk, establishing the radial gradient of heavy element abundance. (v) The final galactic disk formation might have taken much longer by about a half of the galactic age than the halo formation, supporting a slow, inhomogeneous co1lapse model of Larson. (vi) Of the three principal parameters controlling the morphology of C-M diagrams, it was found that the first parameter is heavy clement abundance, the second age and the third helium abundance. (vii) The globular clusters can be divided into three different groups, AI, BI and CII according to Z, Y an d age as well as Dickens' HB types. BI group clusters of HB types 4 and 5 like M 3 and NGC 7006 are the oldest and have the lowest helium abundance of the three groups. And also they appear in the inner halo. On the other hand, the youngest AI clusters have the highest Z and Y, and appear in the innermost halo region and in the disk. (viii) From the result of the clean separations of the clusters into three groups, a three dimensional classification with three parameters, Z, Y and age is prsented. (ix) The anomalous C-M diagrams can be expalined in terms of the three principal parameters. That is, the anomaly of NGC 362 and NGC 7006 is accounted for by the smaller age of the order of $1{\sim}2{\times}10^9$ years rather than by the helium abundance difference, compared with M 3. (x) The difference in two Oosterhoff types I and II can be explained in terms of the mean mass difference of RR Lyrae variables rather than in terms of the helium abundance difference as suggested by Stobie. The mean mass of the variables in Oosterhoff type I clusters is smaller by $0.074m_{\odot}$ which is exactly consistent with Rood's estimate. Since it was found that the mean mass of RR Lyrae stars increases with decreasing Z, the two Oosterhoff types can be explained substantially by the metal abundance difference; the type II has Z<$3.4{\times}10^{-4}$, and the type I has higher Z than the type II.

  • PDF