• Title/Summary/Keyword: global-finite element

Search Result 496, Processing Time 0.026 seconds

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

A numerical method for buckling analysis of built-up columns with stay plates

  • Djafour, M.;Megnounif, A.;Kerdal, D.;Belarbi, A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.441-457
    • /
    • 2007
  • A new numerical model based on the spline finite strip method is presented here for the analysis of buckling of built-up columns with and without end stay plates. The channels are modelled with spline finite strips while the connecting elements are represented by a 3D beam finite element, for which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This numerical model has the advantage to give all possible failure modes of built-up columns for different boundary conditions. The end stay plates are also taken into account in this method. To validate the model a comparative study was carried out. First, a general procedure was chosen and adopted. For each numerical analysis, the lowest buckling loads and modes were calculated. The basic or "pure" buckling modes were identified and their critical loads were compared with solutions obtained using analytical methods and/or other numerical methods. The results showed that the proposed numerical model can be used in practice to study the elastic buckling of built-up columns. This model is considered accurate and efficient for the local buckling of short columns and global buckling for slender columns.

MINIMAL LOCALLY STABILIZED Q1-Q0 SCHEMES FOR THE GENERALIZED STOKES PROBLEM

  • Chibani, Alima;Kechkar, Nasserdine
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1239-1266
    • /
    • 2020
  • In this paper, some novel discrete formulations for stabilizing the mixed finite element method Q1-Q0 (bilinear velocity and constant pressure approximations) are introduced and discussed for the generalized Stokes problem. These are based on stabilizing discontinuous pressure approximations via local jump operators. The developing idea consists in a reduction of terms in the local jump formulation, introduced earlier, in such a way that stability and convergence properties are preserved. The computer implementation aspects and numerical evaluation of these stabilized discrete formulations are also considered. For illustrating the numerical performance of the proposed approaches and comparing the three versions of the local jump methods alongside with the global jump setting, some obtained results for two test generalized Stokes problems are presented. Numerical tests confirm the stability and accuracy characteristics of the resulting approximations.

Dynamic analysis of trusses including the effect of local modes

  • Levy, Eldad;Eisenberger, Moshe
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • The dynamic analysis of trusses using the finite element method tends to overlook the effect of local member dynamic behavior on the overall response of the complete structure. This is due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to calculate the exact dynamic properties of trusses without the need to increase the model size. In the examples the limitations of current solutions are presented together with the exact results obtained from the proposed method.

서브모델링과 응력선형화를 이용한 압력용기의 안전성 평가

  • Choe, Jae-Hun;Kim, Jun-Yeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.234-238
    • /
    • 2015
  • When we use a Finite Elements Method (FEM) to solve a linear static analysis problem, number of elements need to be sufficiently small for convergence of the solution. If we analysis a part, whose curvature is varying heavily, we face to determine how small the elements size is, because the calculated stress is increased as the elements are smaller. In this case, we need to analysis with mesh insensitive method, stress linearization. We can get a solution that is not varying with the elements size if the size is smaller than a certain level. In this paper, we evaluate a pressure vessel having geometrical discontinuities using stress linearization. First, we analysis the vessel with global model, including all part of the vessel, using large shell elements. Second, we analysis the local part of the vessel, which is the small part occurring maximum stress, using small continuum elements. Last, we evaluate the safety of the pressure vessel according to the ASME Sec. VIII Div 2.

  • PDF

A Study on the Structural Behavior of Welded Box Columns (강제 교각의 거동에 관한 연구)

  • 김인한;손용석;엄진호;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.87-94
    • /
    • 1999
  • The structural behavior of welded steel box columns subjected to axial compression and combined load of axial and horizontal load is described. The nonlinear stress-strain relation of the material and residual stress resulted from welds were included in the analysis. Inelastic buckling analysis of hollow rectangular sections of various width-thickness and slenderness ratios was carried out using the semi-analytical and spline finite strip method to investigate the local and global bucking stress and mode interaction. The buckling stress was compared with test results and design curves. Post-buckling behavior was traced by the finite element program(ADINA) and compared with experimental results. The comparison showed that the ultimate stress can be used for the design purpose.

  • PDF

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

Derivation of Plate Separation Criteria for Reinforced Concrete Members Strengthened with Steel Plates (강판으로 보강된 철근콘크리트 부재의 박리기준 유도)

  • 오병환;박대균;조재열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.745-750
    • /
    • 2000
  • Steel plate bonding technique is most widely used in strengthening of existing concrete structures, but it has inherently a problem of the premature failure such as interface separation and rip off. So far, many studies have been arid out in the manner of laboratory tests for the reinforced concrete beams to find out he mechanism of the premature failure. However, in order to verify the characteristics of the premature failure, more reasonable local investigations are needed rather than such relatively global experimental works. In this study, therefore, the double lap test which simulate the pure shear loadings and the half beam tests which consider combined flexure-shear force have been done. There are, however, difficulties in getting the normal stress caused to premature failure, so that finite element analysis was performed, too. In numerical study, material nonlinearity was considered, and the interface element was applied to model the interface between steel plate and adhesive. From the results of experimental and numerical studies, a realistic failure criterion on the separation of steel plates has been derived.

  • PDF

Experimental study on laterally restrained steel columns with variable I cross sections

  • Cristutiu, Ionel-Mircea;Nunes, Daniel Luis;Dogariu, Adrian Ioan
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.225-238
    • /
    • 2012
  • Steel structural elements with web-tapered I cross section, are usually made of welded thin plates. Due to the nonrectangular shape of the element, thin web section may be obtained at the maximum cross section height. The buckling strength is directly influenced by lateral restraining, end support and initial imperfections. If no lateral restraints, or when they are not effective enough, the global behaviour of the members is characterized by the lateral torsional mode and interaction with sectional buckling modes may occur. Actual design codes do not provide a practical design approach for this kind of elements. The paper summarizes an experimental study performed by the authors on a relevant number of elements of this type. The purpose of the work was to evaluate the actual behaviour of the web tapered beam-columns when applying different types of lateral restraints and different web thickness.