DOI QR코드

DOI QR Code

MINIMAL LOCALLY STABILIZED Q1-Q0 SCHEMES FOR THE GENERALIZED STOKES PROBLEM

  • Chibani, Alima (Department of Mathematics Faculty of Exact Sciences University Freres Mentouri) ;
  • Kechkar, Nasserdine (Department of Mathematics Faculty of Exact Sciences University Freres Mentouri)
  • Received : 2019.09.12
  • Accepted : 2020.06.10
  • Published : 2020.09.01

Abstract

In this paper, some novel discrete formulations for stabilizing the mixed finite element method Q1-Q0 (bilinear velocity and constant pressure approximations) are introduced and discussed for the generalized Stokes problem. These are based on stabilizing discontinuous pressure approximations via local jump operators. The developing idea consists in a reduction of terms in the local jump formulation, introduced earlier, in such a way that stability and convergence properties are preserved. The computer implementation aspects and numerical evaluation of these stabilized discrete formulations are also considered. For illustrating the numerical performance of the proposed approaches and comparing the three versions of the local jump methods alongside with the global jump setting, some obtained results for two test generalized Stokes problems are presented. Numerical tests confirm the stability and accuracy characteristics of the resulting approximations.

Keywords

References

  1. M. Ainsworth, G. R. Barrenechea, and A. Wachtel, Stabilization of high aspect ratio mixed finite elements for incompressible flow, SIAM J. Numer. Anal. 53 (2015), no. 2, 1107-1120. https://doi.org/10.1137/140972755
  2. J. M. Boland and R. A. Nicolaides, On the stability of bilinear-constant velocity-pressure finite elements, Numer. Math. 44 (1984), no. 2, 219-222. https://doi.org/10.1007/BF01410106
  3. J. M. Boland and R. A. Nicolaides, Stable and semistable low order finite elements for viscous flows, SIAM J. Numer. Anal. 22 (1985), no. 3, 474-492. https://doi.org/10.1137/0722028
  4. F. Brezzi and J. Pitkaranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient solutions of elliptic systems (Kiel, 1984), 11-19, Notes Numer. Fluid Mech., 10, Friedr. Vieweg, Braunschweig, 1984. https://doi.org/10.1007/978-3-663-14169-3_2
  5. E. Burman and P. Hansbo, A unified stabilized method for Stokes' and Darcy's equations, J. Comput. Appl. Math. 198 (2007), no. 1, 35-51. https://doi.org/10.1016/j.cam.2005.11.022
  6. J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, Internat. J. Numer. Methods Fluids 8 (1988), no. 8, 869-895. https://doi.org/10.1002/fld.1650080802
  7. Ph. Clement, Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. 9 (1975), no. R-2, 77-84. https://doi.org/10.1051/m2an/197509R200771
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge 7 (1973), no. R-3, 33-75. https://doi.org/10.1051/m2an/197307R300331
  9. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. http://doi.org/10.1093/acprof:oso/9780199678792.001.0001
  10. F. Ghadi, V. Ruas, and M. Wakrim, Finite element solution of a stream function-vorticity system and its application to the Navier Stokes equations, Appl. Math. 4 (2013), 257-262. http://dx.doi.org/10.4236/am.2013.41A039
  11. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. https://doi.org/10.1007/978-3-642-61623-5
  12. Y. He, J. Li, and X. Yang, Two-level penalized finite element methods for the stationary Navier-Stoke equations, Int. J. Inf. Syst. Sci. 2 (2006), no. 1, 131-143. http://www.math.ualberta.ca/ijiss/SS-Volume-2-2006/No-1-06/SS-06-01-16.pdf
  13. S. Hong, K. Kim, and S. Lee, Modified cross-grid finite elements for the Stokes problem, Appl. Math. Lett. 16 (2003), no. 1, 59-64. https://doi.org/10.1016/S0893-9659(02)00144-1
  14. T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg. 65 (1987), no. 1, 85-96. https://doi.org/10.1016/0045-7825(87)90184-8
  15. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1-10. https://doi.org/10.2307/2153016
  16. J. Li, J. Wang, and X. Ye, Superconvergence by $L^2$-projections for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model. 6 (2009), no. 4, 711-723. https://doi.org/10.1007/s11432-009-0036-6
  17. K. Nafa, Improved local projection for the generalized Stokes problem, Adv. Appl. Math. Mech. 1 (2009), no. 6, 862-873. https://doi.org/10.4208/aamm.09-m09s07
  18. R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. I, Internat. J. Numer. Methods Fluids 1 (1981), no. 1, 17-43. https://doi.org/10.1002/fld.1650010104
  19. R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, and M. Engelman, The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. II, Internat. J. Numer. Methods Fluids 1 (1981), no. 2, 171-204. https://doi.org/10.1002/fld.1650010206
  20. Y. Shang, A parallel finite element algorithm for simulation of the generalized Stokes problem, Bull. Korean Math. Soc. 53 (2016), no. 3, 853-874. https://doi.org/10.4134/BKMS.b150384
  21. D. J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 71-86. https://doi.org/10.1016/0045-7825(90)90095-4
  22. R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9-23. https://doi.org/10.2307/2007557