DOI QR코드

DOI QR Code

EXAMPLES OF SIMPLY REDUCIBLE GROUPS

  • Luan, Yongzhi (Department of Mathematics The Hong Kong University of Science and Technology)
  • Received : 2019.09.09
  • Accepted : 2020.07.07
  • Published : 2020.09.01

Abstract

Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the Clebsch-Gordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.

Keywords

References

  1. ahulpke, Use GAP to define finite Clifford group, Mathematics Stack Exchange, URL: https://math.stackexchange.com/q/3213387 (version: 2019-05-04), ahulpke's homepage in Mathematics Stack Exchange: https://math.stackexchange.com/users/159739/ahulpke
  2. G. E. Andrews, The Theory of Partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
  3. I. Armeanu, About the Schur index for ambivalent groups, Comm. Algebra 42 (2014), no. 2, 540-544. https://doi.org/10.1080/00927872.2012.717436
  4. M. Artin, Algebra, second edition, Pearson Education, Inc., 2011, English reprint edition published by PEARSON EDUCATION ASIA LTD. and CHINA MACHINE PRESS.
  5. M. Aschbacher, R. Lyons, S. D. Smith, and R. Solomon, The classification of finite simple groups, Mathematical Surveys and Monographs, 172, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/surv/172
  6. R. Ayoub, An Introduction to the Analytic Theory of Numbers, Mathematical Surveys, No. 10, American Mathematical Society, Providence, RI, 1963.
  7. M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984), no. 11, 3171-3182. https://doi.org/10.1063/1.526087
  8. J. L. Berggren, Finite groups in which every element is conjugate to its inverse, Pacific J. Math. 28 (1969), 289-293. http://projecteuclid.org/euclid.pjm/1102983447 https://doi.org/10.2140/pjm.1969.28.289
  9. Y. G. Berkovich, L. S. Kazarin, and E. M. Zhmud', Characters of finite groups. Vol. 2, second edition, De Gruyter Expositions in Mathematics, vol. 64, De Gruyter, Berlin, 2019.
  10. H. Bottomley, The number of partitions of n, https://oeis.org/A000041, 2001, The On-Line Encyclopedia of Integer Sequences (OEIS), A000041 , [Online; accessed 16-February-2020].
  11. N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, translated from the 1968 French original by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
  12. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.
  13. R. W. Carter, Finite groups of Lie type, John Wiley & Sons, Ltd., 1985.
  14. T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Harmonic analysis on finite groups, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511619823
  15. T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Mackey's theory of ${\tau}$-conjugate representations for finite groups, Jpn. J. Math. 10 (2015), no. 1, 43-96. https://doi.org/10.1007/s11537-014-1390-8
  16. J.-Q. Chen, J. Ping, and F. Wang, Group representation theory for physicists, second edition, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. https://doi.org/10.1142/5019
  17. L. Christine Kinsey and T. E. Moore, Symmetry, shape, and space. An introduction to mathematics through geometry, Key College Publishing, 2002.
  18. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, third edition, Springer-Verlag, New York, 1972.
  19. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14, Springer-Verlag, Berlin-New York, 1980.
  20. L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971.
  21. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory, Springer-Verlag, Berlin, 2008.
  22. D. Faddeev and I. Sominski, Problems in higher algebra, Mir Publishers, Moscow, 1972, Translated from the Russian by George Yankovsky, Revised from the 1968 Russian edition.
  23. H. G. Feichtinger, W. Kozek, and F. Luef, Gabor analysis over finite abelian groups, Appl. Comput. Harmon. Anal. 26 (2009), no. 2, 230-248. https://doi.org/10.1016/j.acha.2008.04.006
  24. J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83-119. https://doi.org/10.1007/BF02417955
  25. J. S. Frame, The characters of the Weyl group $E_8$, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 111-130, Pergamon, Oxford, 1970.
  26. GAP Centres, GAP - Groups, Algorithms, Programming, https://www.gap-system.org, Version GAP 4.10.1 released on 23 February 2019.
  27. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
  28. A. Gelessus, Character tables for chemically important point groups, http://symmetry.jacobs-university.de/, 2019, [Online; accessed 16-August-2019].
  29. A. Gelessus, W. Thiel, and W. Weber, Multipoles and symmetry, J. Chemical Education 72 (1995), no. 6, 505-508. https://doi.org/10.1021/ed072p505
  30. J. B. Geloun and S. Ramgoolam, Tensor models, Kronecker coefficients and permutation centralizer algebras, J. High Energ. Phys. 92 (2017). https://doi.org/10.1007/jhep11(2017)092
  31. S. Givant and P. Halmos, Introduction to Boolean algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9
  32. J. Goss, Molecular examples for point groups, https://www.staff.ncl.ac.uk/j.p.goss/symmetry/Molecules_pov.html, 2019, [Online; accessed 16-August-2019].
  33. D. Gross, Finite phase space methods in quantum information, https://www.qc.uni-freiburg.de/files/diplom.pdf, 2005, Diploma thesis, Universitat Potsdam, [Online; accessed 25-August-2019].
  34. L. C. Grove, The characters of the hecatonicosahedroidal group, J. Reine Angew. Math. 265 (1974), 160-169. https://doi.org/10.1515/crll.1974.265.160
  35. B. C. Hall, Quantum theory for mathematicians, Graduate Texts in Mathematics, 267, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-7116-5
  36. M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962.
  37. S. D. Howard, A. R. Calderbank, and W. Moran, The finite Heisenberg-Weyl groups in radar and communications, EURASIP J. Appl. Signal Process. 2006 (2006), Art. ID 85685, 12 pp. https://doi.org/10.1155/asp/2006/85685
  38. J.-S. Huang, Lectures on representation theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. https://doi.org/10.1142/9789812815743
  39. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511623646
  40. T. Inui, Y. Tanabe, and Y. Onodera, Group theory and its applications in physics, Springer Series in Solid-State Sciences, 78, Springer-Verlag, Berlin, 1990, Translated and revised from the 1980 Japanese edition by the authors. Softcover reprint of the hardcover 1st edition 1990.
  41. I. M. Isaacs, Algebra, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.
  42. G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1985. First published by Addison-Wesley in 1981; digitally printed version 2009.
  43. G. James and M. Liebeck, Representations and characters of groups, second edition, Cambridge University Press, New York, 2001. https://doi.org/10.1017/CBO9780511814532
  44. D. L. Johnson, Presentations of groups, second edition, London Mathematical Society Student Texts, 15, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9781139168410
  45. D. L. Johnson and E. F. Robertson, Finite groups of deficiency zero, in Homological group theory (Proc. Sympos., Durham, 1977), 275-289, London Math. Soc. Lecture Note Ser., 36, Cambridge University Press, Cambridge, 1979.
  46. R. Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 5, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-3542-0
  47. L. S. Kazarin and E. I. Chankov, Finite simply reducible groups are solvable, Sb. Math. 201 (2010), no. 5-6, 655-668; translated from Mat. Sb. 201 (2010), no. 5, 27-40. https://doi.org/10.1070/SM2010v201n05ABEH004087
  48. L. S. Kazarin and V. V. Yanishevskii, On finite simply reducible groups, St. Petersburg Math. J. 19 (2008), no. 6, 931-951; translated from Algebra i Analiz 19 (2007), no. 6, 86-116. https://doi.org/10.1090/S1061-0022-08-01028-5
  49. E. I. Khukhro and V. D. Mazurov, Unsolved problems in group theory, The Kourovka Notebook, arXiv e-prints (2014), arXiv:1401.0300, Submitted on 1 Jan 2014 (v1), last revised 26 Mar 2019 (v16).
  50. M. Koca, R. Koc, M. Al-Barwani, and S. Al-Farsi, Maximal subgroups of the Coxeter group W($H_4$) and quaternions, Linear Algebra Appl. 412 (2006), no. 2-3, 441-452. https://doi.org/10.1016/j.laa.2005.07.018
  51. M. Ladd, Symmetry of crystals and molecules, Oxford University Press, Oxford, 2014. https://doi.org/10.1093/acprof:oso/9780199670888.001.0001
  52. H. B. Lawson, Jr., and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989.
  53. G. W. Mackey, Multiplicity free representations of finite groups, Pacific J. Math. 8 (1958), 503-510. http://projecteuclid.org/euclid.pjm/1103039895 https://doi.org/10.2140/pjm.1958.8.503
  54. G. E. Martin, Transformation geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1982.
  55. G. A. Miller, Note on the groups generated by operators transforming each other into their inverses, Quart. J. 40 (1909), 366-367, contained in The collected works of George Abram Miller, Volume III, https://hdl.handle.net/2027/mdp.39015040409990.
  56. G. A. Miller, Second note on the groups generated by operators transforming each other into their inverses [A correction], Quart. J. 44 (1913), 142-146, contained in The collected works of George Abram Miller, Volume III, https://hdl.handle.net/2027/mdp.39015040409990.
  57. M. Misaghian, The representations of the Heisenberg group over a finite field, Armen. J. Math. 3 (2010), no. 4, 162-173.
  58. U. Muller, Symmetry relationships between crystal structures: applications of crystallo-graphic group theory in crystal chemistry, International Union of Crystallography Texts on Crystallography, 18, Oxford University Press, Oxford, 2013
  59. D. Mumford, Tata lectures on theta. III, reprint of the 1991 original, Modern BirkhauserClassics, Birkhauser Boston, Inc., Boston, MA, 2007. https://doi.org/10.1007/978-0-8176-4578-6
  60. I. Pak, G. Panova, and D. Yeliussizov, Bounds on the largest Kronecker and inducedmultiplicities of finite groups, Comm. Algebra 47 (2019), no. 8, 3264–3279. https://doi.org/10.1080/00927872.2018.1555837
  61. J. Patera and R. Twarock, Affine extension of noncrystallographic Coxeter groups andquasicrystals, J. Phys. A 35 (2002), no. 7, 1551–1574. https://doi.org/10.1088/0305-4470/35/7/306
  62. E. W. Read, Projective characters of the Weyl group of type $F_4$, J. London Math. Soc.(2) 8 (1974), 83-93. https://doi.org/10.1112/jlms/s2-8.1.83
  63. M. S. Richman, T. W. Parks, and R. G. Shenoy, Discrete-time, discrete-frequency, time-frequency analysis, IEEE Transactions on Signal Processing 46 (1998), no. 6, 1517-1527 https://doi.org/10.1109/78.678465
  64. H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.https://doi.org/10.2307/2308012
  65. S. Roman, Fundamentals of group theory, Birkhauser/Springer, New York, 2012. https://doi.org/10.1007/978-0-8176-8301-6
  66. H. E. Rose, A course on finite groups, Universitext, Springer-Verlag London, Ltd.,London, 2009. https://doi.org/10.1007/978-1-84882-889-6
  67. J. J. Rotman, An introduction to the theory of groups, fourth edition, Graduate Texts inMathematics, 148, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4176-8
  68. B. E. Sagan, The symmetric group, second edition, Graduate Texts in Mathematics,203, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6804-6
  69. SageMath licensed under the GPL, SageMath, http://www.sagemath.org/index.html,Version SageMath 8.7 released on 23 March 2019.
  70. D. E. Sands, Introduction to crystallography, Dover Publications, Inc., New York, 1993,this Dover edition, first published in 1993, is an unabridged republication of the work firstpublished by W. A. Benjamin, Inc. (in the "Physical Chemistry Monograph Series"ofthe "Advanced Book Program"), 1969 (corrected printing 1975).
  71. F. Sasaki, M. Sekiya, T. Noro, K. Ohtsuki, and Y. Osanai, Non-relativistic configuration interaction calculations for many-electron atoms: Atomci, Modern Techniquesin Computational Chemistry: MOTECC-91 (E. Clementi, ed.), Springer Netherlands,1991
  72. E. M. Schmidt, Number of conjugacy classes in Weyl group of type $D_n$, https://oeis.org/A234254, 2013, The On-Line Encyclopedia of Integer Sequences (OEIS), A234254,[Online; accessed 16-February-2020]
  73. J.-P. Serre, Finite groups: an introduction, Surveys of Modern Mathematics, vol. 10,International Press, Somerville, MA; Higher Education Press, Beijing, 2016, With assistance in translation provided by Garving K. Luli and Pin Yu.
  74. B. Simon, Representations of finite and compact groups, Graduate Studies in Mathematics, 10, American Mathematical Society, Providence, RI, 1996.
  75. R. Tao, Group theory in physics, Chinese ed., Higher Education Press, 2011.
  76. T. Tokuyama, On the decomposition rules of tensor products of the representations ofthe classical Weyl groups, J. Algebra 88 (1984), no. 2, 380-394. https://doi.org/10.1016/0021-8693(84)90072-3
  77. J. Tolar, A classification of finite quantum kinematics, J. Physics: Conference Series538 (2014), 012020.
  78. A. J. van Zanten and E. de Vries, Criteria for groups with representations of the secondkind and for simple phase groups, Canadian J. Math. 27 (1975), no. 3, 528-544. https://doi.org/10.4153/CJM-1975-064-4
  79. E. P. Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941),57-63. https://doi.org/10.2307/2371276
  80. Wikipedia contributors, Stone-von Neumann theorem - Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Stone-von_Neumann_theorem&oldid=932501700, 2019, [Online; accessed 17-January-2020].
  81. Wikipedia contributors, Molecular symmetry - Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Molecular_symmetry&oldid=962044761, 2020, [Online; accessed 13-June-2020].
  82. H. S. Wilf, Lectures on integer partitions, 2000, PIMS Distinguished Chair Lecture Notes, available in http://www.mathtube.org/lecture/notes/lectures-integerpartitions.
  83. P. Woit, Quantum mechanics for mathematicians: The Heisenberg group and theSchrodinger representation, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.4136&rep=rep1&type=pdf, 2012, [Online; accessed 25-August-2019].
  84. Wolfram Research, Wolfram Mathematica, License purchased by the university, Version11.3.