• Title/Summary/Keyword: global weather prediction model

Search Result 88, Processing Time 0.02 seconds

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

Verification of Mid-/Long-term Forecasted Soil Moisture Dynamics Using TIGGE/S2S (TIGGE/S2S 기반 중장기 토양수분 예측 및 검증)

  • Shin, Yonghee;Jung, Imgook;Lee, Hyunju;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Developing reliable soil moisture prediction techniques at agricultural regions is a pivotal issue for sustaining stable crop productions. In this study, a physically-based SWAP(Soil-Water-Atmosphere-Plant) model was suggested to estimate soil moisture dynamics at the study sites. ROSETTA was also integrated to derive the soil hydraulic properties(${\alpha}$, n, ${\Theta}_r$, ${\Theta}_s$, $K_s$) as the input variables to SWAP based on the soil information(Sand, Silt and Clay-SSC, %). In order to predict the soil moisture dynamics in future, the mid-term TIGGIE(THORPEX Interactive Grand Global Ensemble) and long-term S2S(Subseasonal to Seasonal) weather forecasts were used, respectively. Our proposed approach was tested at the six study sites of RDA(Rural Development Administration). The estimated soil moisture values based on the SWAP model matched the measured data with the statistics of Root Mean Square Error(RMSE: 0.034~0.069) and Temporal Correlation Coefficient(TCC: 0.735~0.869) for validation. When we predicted the mid-/long-term soil moisture values using the TIGGE(0~15 days)/S2S(16~46 days) weather forecasts, the soil moisture estimates showed less variations during the TIGGE period while uncertainties were increased for the S2S period. Although uncertainties were relatively increased based on the increased leading time of S2S compared to those of TIGGE, these results supported the potential use of TIGGE/S2S forecasts in evaluating agricultural drought. Our proposed approach can be useful for efficient water resources management plans in hydrology, agriculture, etc.

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network (신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.137-146
    • /
    • 2011
  • In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF