• Title/Summary/Keyword: global warming situation

Search Result 71, Processing Time 0.027 seconds

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

Evaluating Performance of Energy Conservation Measures on Energy-Efficient Remodeling at Deteriorated High School Buildings (노후 고등학교 건물의 에너지효율화 리모델링을 위한 요소기술의 성능 평가)

  • Lhee, Sang Choon;Choi, Young Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.97-102
    • /
    • 2013
  • Many countries over the world have acknowledged the global warming problem by greenhouse gas emission and tried to solve the problem. The Korean government has also taken many actions such as The Act on Low Carbon, Green Growth and on Promoting Green Building in that architectural building section takes 1/4 of national greenhouse gas emission. Under the situation that buildings constructed 15 years ago when insulation standards were reinforced take about 74%, The Plan on Vitalizing Green Remodeling, finally established on July 2013, will induce energy-efficient remodeling of deteriorated buildings. Using the energy simulation by the Visual DOE 4.0 program, this paper proposed the ways of energy-efficient remodeling of deteriorated high school buildings by measuring energy saving performance of factors that were drawn from the previous study. The factors considered are insulation, window's SHGC, south louver, system efficiency, and indoor setting temperature. Among them, all factors except SHGC proved contribution to reducing energy use at deteriorated high school buildings, compared with the baseline energy consumption.

Biogeographic Feature of North Korean Ecosystem (북한 자연생태계의 생물지리적 특성)

  • Kong, Woo-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.3
    • /
    • pp.157-172
    • /
    • 2002
  • This work aims to collect a biogeographic informations on the biota, alpine ecosystem, nature reserves, forest ecosystem of North Korea, and also to accumulate a basic data on the current situation and problem of the natural ecosystem of North Korea for the preparation of future cooperation and exchange between South and North Koreas. The obtained findings are as follow. First, North Korean biota contains 18,013 species, and consists of 6,710 plant species, including 3,860 species of vascular plants. Secondly, urgent investigation on the biogeographically important arctic-alpine and alpine plants and ecosystem, those are known to be endangered due to environmental change and global warming, is required. Thirdly, the conservations of diverse nature in North Korea are conducted by the introduction of various systems, such as nature preservation region, reserves for plant, animal and sea bird, and natural monuments. Fourthly, out of 9.5 million hectares of forest, one million hectares have already faced forest denudation, thus caused lots of damages for forest ecosystem. Sharp decline of North Korean forest land are due mainly to the expansion of terraced dry-field farming and deforestation. Recovery of denudated forest land should be approached by both South and North Korean sides to solve the problem of shortage of foods and restoration of natural ecosystem of North Korea.

A study on the functional restructuring of the security system for the reduction of the amount of carbon dioxide (탄소량 감축을 위한 보안 시스템의 기능적 구조 개선에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the problem of global warming has become a globally important issues. and To solve these problems, has been receiving increasing attention for the Green IT. In these situation, IT techniques are evolving with variety services and hacking techniques. so, it is inevitable to the use of a many and diverse secure system. As a result, Carbon Dioxide emissions are expected to increase. Therefore, in this paper is analyzed the factors of security system's $CO_2$ emissions through Experiments and A case study. and is proved that is reducing $CO_2$ emissions by improving the functional restructuring of the security system. In a future, this paper is expected to serve as a valuable Information for security network design and performance improvements and to reduce Carbon Emissions in the Field of IT.

Development of Unmanned Irrigation Technology Using Five Senses During the Disconnection of Communication Due to Disasters (재난재해로 인한 통신두절시 오감기술을 이용한 무인 수처리 기술 개발)

  • Kim, Jae-Yeol;You, Kwan-Jong;Jung, Yoon-Soo;Ahn, Tae-Hyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.141-148
    • /
    • 2017
  • Recently, localized heavy rain storms have been occurring frequently due to global warming, and it is difficult to shield a large number of facilities against disaster with limited manpower. The unmanned water treatment system uses five senses to analyze various judgment criteria, which are set according to field situations such as machine vibrations, the temperature of bearings, the sound of the operating machines, and the hydraulic pressure, current, and voltage of the hydraulic floodgates. It thus judges normal or abnormal operation status and conducts unmanned control of such machines. It automatically applies a system to the interruption of communications and therefore improves the reliability of its unmanned irrigation facilities. It maximizes the operational efficiency of managers responsible for various fields, enabling them to discharge water before the situation escalates to a crisis within the golden time, and to protect against damage to humans and property.

A Comparative Study on Policy of Modal Shift for Enhancing of Eco-friendly Rail Freight Transportation (친환경수단으로서의 철도화물운송 증대를 위한 Modal Shift 정책 비교 연구)

  • Lee, Yoon-Mi;Moon, Dae-Seop;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2455-2462
    • /
    • 2008
  • Global warming has become one of the most important social responsibilities. After Kyoto protocol for greenhouse gas reduction by climatic change convention came into effect, developed countries are presenting various policies to reduce greenhouse gas that is produced in transport field. One of those policies is modal shift that change from road freight to sea, inland waterway and railway transportation that is eco-friendly. Because increase of road freight brings about road congestion and accident, logistics cost, air pollution and green house gases. Railways are superior to all other modes of transport in mass transportability, high speed, timeliness, safety and environmental-friendliness, but the railway industry has been pushed behind in competition. In developed country's government actively promoted relevant legislation, policies, and countermeasures known as modal shift policies to shift freight transport from road to large volume mode such as railway and ship. In this paper, we discuss the current situation in modal shift, compare it with cases in other countries EU and Japan, identify problems in Korea, and propose the following ways to enhance competitiveness of rail freight.

  • PDF

Characteristic of the mixing ratio Magnesia Phosphate Composite (MPC) Exterior Material Artificial Stone According to the Waste Porcelain mixing ratio (폐자기 혼합비율 마그네시아 인산염 복합체(MPC) 외장재 인조석재의 특성)

  • Yoo, Yong-Jin;Jo, Byeong-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.160-161
    • /
    • 2013
  • Recently, the enviroment problem is serious due to the global warming phenomenon because of the greenhouse gas exhaustion. In addition, the effort to reduce the problem in the situation where the severity of the destruction of environment because of the indiscriminate picking of the that is the raw material of the cement, Accordingly, in the interior of a country, the industrial site using the artificial stone instead of the natural stone is increased. Thus the cement reduction amount of use and substitute material research is the urgent actual condition with the gas emission, which here it is generated in conducting compression molding in the building stone manufacturing process performance degradation phenomenon and fire resistance, and problem of the durability. limestone and aggregate and exhaustion of resource are emphasized is continued. In this research, the fly ash and waste porcelain is applied to the magnesia phosphate composite (MPC) and the characteristic of the artificial stone according to it tries to be looked into.

  • PDF

Wheat Blast in Bangladesh: The Current Situation and Future Impacts

  • Islam, M. Tofazzal;Kim, Kwang-Hyung;Choi, Jaehyuk
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.

Analysis of Irradiation and Power per Each Months of Photovoltaic Systems (태양광 발전시스템의 월별 일사량과 전력량 분석)

  • Shin, Hyun-Mahn;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea

  • Song, Man-K.;Li, Xiang-Z.;Oh, Young-K.;Lee, Chang-Kyu;Hyun, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.130-136
    • /
    • 2011
  • Methane is known to be one of the major greenhouse gases. On a global scale, livestock farming may contribute 18% of total greenhouse gas emissions. Though methane contribution is less than 2% of all the factors leading to global warming, it plays an important role because it is 21 times more effective than carbon dioxide. Methane emission is a direct result of the fermentation process performed by ruminal microorganisms and, in particular, the archael methanogens. Reducing methane emission would benefit both ruminant production and the environment. Methane generation can be reduced by electron-sink metabolic pathways to dispose of the reducing moieties. An alternative way for methane control in the rumen is to apply inhibitors against methanogens. Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two pressing problems-environmental crisis and energy shortage. An obvious benefit from methane production is the energy value of the gas itself. Control of methane emission by rumen microbes in Korea has mainly been focused on application of various chemicals, such as BES and PMDI, that inhibit the growth and activity of methanogens in the rumen. Alternatives were to apply long-chain polyunsaturated fatty acids and oils with or without organic acids (malate and fumarate). The results for trials with methane reducing agents and the situation of biogas production industries and a typical biogas plant in Korea will be introduced here.